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Abstract: Data acquired from stranded sea turtles can provide awareness of human activities that
adversely affect sea turtle populations. We assessed strandings of five sea turtle species between 2017
and 2021. This study utilizes principal component analysis (PCA) and structural equation modeling
(SEM) to reveal potential causes of sea turtle strandings linked to anthropogenic effects in Taiwan.
Although our study did not observe a statistically significant impact of offshore wind turbines on
sea turtle strandings, it did find evidence of a significant direct effect of coral colony density, heavy
metals, and fishing disturbance on such strandings. For the conservation of endangered sea turtles,
we recommend the incorporation of PCA and SEM in further contexts for validating anthropogenic
impact assessments.

Keywords: Chelonia mydas; anthropogenic influences; principal component analysis; structural
equation modeling; latent variables

1. Introduction

Sea turtles can serve as sentinel indicators of the health of marine ecosystems [1,2].
Five of the seven internationally recognized marine turtle species are present in the
coastal areas of Taiwan: the green turtle (Chelonia mydas; Endangered), hawksbill tur-
tle (Eretmochelys imbricata; Critically endangered), olive ridley turtle (Lepidochelys olivacea;
Vulnerable), leatherback turtle (Dermochelys coriacea; Vulnerable), and loggerhead turtle
(Caretta caretta; Vulnerable) [2,3]. These species of sea turtles are all included in the Red
List of Threatened Species maintained by the World Conservation Union (IUCN Red
List), and are also listed under the Schedule of Protected Marine Species (Ocean Affairs
council, Executive Yuan) in Taiwan. Of these, the green turtle is the most prevalent in
Taiwan [2,3]. Furthermore, coastal areas in Taiwan contain important feeding and nesting
sites for green turtles. However, as green turtles face numerous threats that are unre-
lated to wind farms (e.g., human activity, including fishery bycatch, illegal egg poaching,
coastal development, marine debris, global environmental change, marine pollution, and
anthropogenic-exacerbated disease including fibropapillomatosis (FP), etc.) [2–12], it can
be difficult to distinguish between the effects of these threats and the impact of wind farms
on the marine turtles.

The offshore wind energy industry has been growing since the 1990s, when the first
offshore wind farms began operating [13]. Enthusiasm for offshore wind farms and other
sources of sustainable energy is currently surging as the widespread development and adop-
tion of sustainable energy are critical to mitigating climate change and its effects [13–17].
However, the precautionary principle dictates that offshore wind farms should not be
deployed in close proximity to biodiversity hotspots, significant fish spawning areas, im-
portant migration routes, or sensitive habitats (including deep-sea corals, maerl beds,
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and crinoid assemblages), especially when these habitats occur within Marine Protected
Areas [13].

Offshore wind turbines can have potential impacts on sea turtles in several ways.
These include (1) vessel collisions with turtles, such as collisions involving the working
boats of wind turbines [18]; (2) underwater sounds resulting from wind turbine operation,
including pile driving [19,20]; and (3) local magnetic disturbances caused by cables, which
can interfere with sea turtle migration [21,22]. Therefore, determining which effects result
from offshore wind turbines, other human activities, and/or environmental factors can be
difficult. Furthermore, collecting sufficient high-quality data on sea turtles over expansive
ocean areas is also extremely challenging. For example, sea turtles generally spend more
than 90% of their time submerged under the surface of the water [23–28]. This has limited
our ability to decipher what problems sea turtles face underwater. Therefore, sea turtle
stranding events could provide us with an opportunity to understand the potential nega-
tive impacts of anthropogenic activities (e.g., entanglement in fishing nets/lines/marine
debris, ingestion of fish hooks, boat strikes, etc.) [4,8,10,22,26,29–34] and this could serve
as a reference for sea turtle conservation management. In addition, recent advances in
computer processing power and statistical methods, as well as the growing availability
of large amounts of high-quality environmental data have greatly improved the ability
to analyze the structure of ecological systems using mathematical methods. In recent
years, the growing availability of publicly available environmental and species data has
created opportunities for large-scale data analyses to investigate the impacts of specific
anthropogenic disturbances on numerous species of conservation concern.

As a consequence of the aforementioned circumstances, data obtained from stranded
sea turtles can provide insight into human activities that negatively impact sea turtle
populations [2,8,9,26,27,29]. Such activities include vessel collisions or oil spills that damage
feeding or swimming abilities [18,28,29]. This study quantitatively analyzed the impacts
that numerous human disturbances and natural effects have on sea turtles, including the
potential effects of offshore wind turbines. This study will contribute to our understanding
of the potential causes for stranded marine turtles, thereby providing important information
for application in sea turtle conservation efforts.

2. Materials and Methods
2.1. Data Collection

Sea turtle stranding records: This study collated stranded sea turtle data (data years:
from 1 January 2017 to 30 September 2021) from the Marine Animal Rescue Network
(MARN) of the Ocean Conservation Administration in Taiwan. Our dataset included data
from each county and city where MARN operates. MARN records data from both dead
and living sea turtles that were found (1) washed ashore, (2) floating in coastal waters, or
(3) as fishery bycatch.

Marine environmental data: Marine environmental data (including salinity, water tem-
perature, dissolved oxygen, and dissolved oxygen saturation as well as concentrations
of chlorophyll a, ammonium, nitrate-nitrogen, phosphate, nitrite-nitrogen, silicate, cop-
per, lead, and zinc) were obtained from the Ocean Conservation Administration website
(https://iocean.oca.gov.tw/OCA_OceanConservation/PUBLIC/Marine_WaterQuality.aspx)
(accessed on 10 March 2022).

The number of fishermen: We determined the number of people employed in the
fishery industry using data from the Fishery Yearbook 2020, published by the Fisheries
Agency of Taiwan (https://www.fa.gov.tw/view.php?theme=FS_AR&subtheme=&id=20)
(accessed on 10 March 2022).

Coral coverage area: We determined the coral coverage area, using data obtained from
the Report on the Results of the 2019 Coral Reef Ecosystem Survey Project [35] (https://
www.oca.gov.tw/ch/home.jsp?id=394&parentpath=0,299&mcustomize=research_list.jsp)
(accessed on 10 March 2022).

https://iocean.oca.gov.tw/OCA_OceanConservation/PUBLIC/Marine_WaterQuality.aspx
https://www.fa.gov.tw/view.php?theme=FS_AR&subtheme=&id=20
https://www.oca.gov.tw/ch/home.jsp?id=394&parentpath=0,299&mcustomize=research_list.jsp
https://www.oca.gov.tw/ch/home.jsp?id=394&parentpath=0,299&mcustomize=research_list.jsp
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Additionally, we determined the number of offshore wind turbines under construction
and operation in coastal areas of Taiwan (i.e., monthly turbine count) with which to estimate
the impact of wind turbines on marine turtles in each county and city.

2.2. Study Area

Investigation areas were delineated around monitoring stations. These areas were
typically large scale and included both coastal cities and counties in Taiwan. Specifically,
these areas included New Taipei City (including Keelung City; A1), Taoyuan City (A2),
Hsinchu County (A3), Miaoli County (A4), Taichung City (A5), Changhua County (A6),
Yunlin County (A7), Chiayi County (A8), Tainan City (A9), Kaohsiung City (A10), Pingtung
County [including North Pingtung (A11), Hengchun Peninsula (A12) and Liuchiu Island
(A13)], Taitung County (A14), Hualien County (A15), and Yilan County (A16) (Figure 1).
Therefore, datasets included data that fell within 16 different investigation areas. Data on
stranded sea turtles were aggregated separately for the 16 investigation areas according to
season [spring (S1): March to May, summer (S2): June to August, autumn (S3): September
to November, winter (S4): December to February] and then matched with water quality,
coral, and fisheries data. In total, there were 134 data (including salinity, water temperature,
dissolved oxygen, and dissolved oxygen saturation as well as concentrations of chlorophyll
a, ammonium, nitrate-nitrogen, phosphate, nitrite-nitrogen, silicate, copper, lead, and zinc)
entries available for analysis.
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2.3. Data Analysis

We first employed principal component analysis (PCA) to conduct exploratory re-
search on water quality data. Principal component axes identified by this analysis were
considered latent variables [36,37] that influenced oceanic environmental changes. The
meaning of each principal component (PC) axis was determined by examination of the
factor loadings of the variables as well as the temporal and spatial changes of each PC
score [38], which were assessed using two-way ANOVA and multiple comparisons (us-
ing Duncan’s Method). Once the primary environmental factors (latent variables) were
recognized, we incorporated the data pertaining to the number of stranded sea turtles,
the number of fishery employees, coral coverage, and offshore wind turbines to construct
SEM for the conceptual model of ecological system changes in coastal area waters. In
so doing, we used SEM, which employs both factor analysis and path analysis and can
analyze complex relationships between organisms and their environment [36,39]. In other
words, SEM can analyze the intricate networks of causal relationships in ecosystems [40–42].
In building our models, we used data on stranded sea turtles from the Marine Animal
Rescue Network (MARN) of the Ocean Conservation Administration in Taiwan (Figure 1).
Lastly, the LISREL8 program was used to perform structural equation modeling (SEM) and
thereby verify conceptual models [36]. The detailed assumptions and the concept of SEM
are elaborated by [36,42].

3. Results

During the study period, we recorded 810 sea turtle strandings: 692 green turtles
(C. mydas) (85.4%) (juvenile = 567; sub-adult = 70; adult = 55), 48 hawksbill turtles
(E. imbricata) (5.9%), 37 olive ridley turtles (L. olivacea) (4.5%), 30 loggerhead turtles
(C. caretta) (3.7%), and 3 leatherback turtles (D. coriacea) (0.3%) (Table 1). For green turtles,
juveniles (Curved carapace length; CCL < 67 cm) [2,9] were the most abundant size class
(Table 2). The most prevalent oceanic-stage juveniles (CCL < 30 cm) [32,43] identified
in our study were hawksbill turtles (12.5%; n = 6), followed by loggerhead turtles (6.6%;
n = 2), olive ridley turtles (2.7%; n = 1), and green turtles (0.7%; n = 5) (Table 1). We found
90 turtles alive and 720 dead. The results of marine environmental data were shown in
Table 3.

Table 1. Sea turtle strandings recorded from 1 January 2017 to 30 September 2021 in Taiwan.

Species n %
Curved Carapace Length (cm) Oceanic

Juvenile (%)Range Mean SD

Green turtle 692 85.4 6.50–130.00 53.95 17.21 5 (0.7%)
Hawksbill turtle 48 5.9 12.00–90.00 43.50 15.47 6 (12.5%)
Olive ridley turtle 37 4.5 22.00–124.50 58.59 18.17 1 (2.7%)
Loggerhead turtle 30 3.7 11.50–120.00 78.86 21.62 2 (6.6%)
Leatherback turtle 3 0.3 140.00–150.00 144.50 5.07 -
Total 810 100 14 (1.7%)

Table 2. The life stage of green turtles in this study.

Life Stage n %

Juvenile (CCL < 67 cm) 567 81.9
Sub-adult (CCL 67–84 cm) 70 10.1

Adult (CCL > 84 cm) 55 7.9
Total 692 100
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Table 3. Ranges and mean values (±SD) of the hydrological and metal variables included in the
study (N = 134).

Variable Range Mean SD

Temperature (◦C) 15.8 (16.8–32.6) 26.193 3.9008
Salinity (psu) 11.6 (23.4–35.0) 32.956 1.9412
Dissolved oxygen (mg/L) 4.4 (4.5–8.9) 6.631 0.7615
Dissolved oxygen saturation (%) 87.2 (54.2–141.4) 95.927 12.2051
A chlorophyll-a (µg/L) 22.4 (0.1–22.4) 1.389 2.4330
Ammonium (mg/L) 0.46 (0.01–0.46) 0.0642 0.08872
Nitrate-nitrogen (mg/L) 0.415 (0.005–0.420) 0.07183 0.079210
Phosphate (mg/L) 0.17 (0.00–0.18) 0.0318 0.03600
Nitrite-nitrogen (mg/L) 0.130 (0.001–0.130) 0.01262 0.021747
Silicate (mg/L) 4.0010 (0.0090–4.0100) 0.425836 0.6160038
Copper (mg/L) 0.0349 (0.0001–0.0350) 0.001175 0.0035777
Zinc (mg/L) 0.0429 (0.0001–0.0430) 0.005887 0.0054381
Lead (mg/L) 0.00195 (0.00005–0.00200) 0.0001832 0.00031616

Table 4 presents the results of a two-factor analysis of variance conducted using
data from 401 stranded sea turtles across 16 county districts (paired with water quality
data). Results indicated that the number of stranded sea turtles in spring (March to May)
was significantly higher than in autumn (September to November), winter (December to
February), and summer (June to August). Furthermore, New Taipei City, the Hengchun
Peninsula, Yilan-Hualien, and Liuchiu Island had significantly more stranded turtle events
than did Taichung-Changhua, and Yunlin-Chiayi.

Table 4. Results of two-way ANOVA for the influence of station and seasons and the interaction
between these two factors upon the number of stranded sea turtles.

Variables
Two-Way ANOVA Multiple Comparison *

F p-Value

Station 42.65 <0.001 A1aA12bA14bA15bA16bA13bcA2cdA3cdA4cdA9cd
A10cdA11cdA5dA6dA7dA8d

Season 16.37 <0.001 S1aS2bS3bS4b

Station × Season ** 5.712 <0.001

S1
A1aA12bA14bA15bA16bA2cA3cA4cA5cA6cA7cA8c
A9c A10cA11cA13c

S2
A1aA14aA15aA16aA2abA3abA4abA7abA8abA9ab
A10abA11ab A12abA13abA5bA6b

S3
A1aA12bA2bcA3bcA4bcA5bcA6bcA9bcA10bcA11bc
A13bcA14bcA15bcA16bcA7cA8c

S4
A1aA14bA15bA16bA9bcA10bcA11bcA12bcA13bcA2c
A3cA4cA5cA6cA7cA8c

* = Compared using Duncan’s Method. Different small letters indicate statistically significant differences (p < 0.05).
** = Interaction of Station and Season. A1 = New Taipei City, A2 = Taoyuan City, A3 = Hsinchu County,
A4 = Miaoli County, A5 = Taichung City, A6 = Changhua County, A7 = Yunlin County, A8 = Chiayi County,
A9 = Tainan City, A10 = Kaohsiung City, A11 = North Pingtung, A12 = Hengchun Peninsula, A13 = Liuchiu Island,
A14 = Taitung County, A15 = Hualien County, A16 = Yilan County. S1 = Spring, S2 = Summer, S3 = Autumn,
S4 = Winter.

Regarding the geographical distribution of the number of fishermen (Table 5), Kaohsi-
ung City (48,540) and New Taipei City (including Keelung City) (41,909) had the highest
“total number of professional fishermen”, while Hsinchu County (1902) and Taoyuan
City (623) had the lowest total number of professional fishermen. North Pingtung (5112)
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and Kaohsiung City (15,221) had the highest “number of coastal professional fishermen”,
while Changhua County (453) and Taichung City (0) had the lowest numbers of coastal
professional fishermen.

Table 5. The geographical distribution of the number of fishermen included in this study.

Area The Number of
Professional Fishermen

The Number of Coastal
Professional Fishermen

A1 41,909 1225
A16 16,135 3254
A15 3020 1216
A14 3555 914
A12 4597 2045
A13 7355 1789
A11 18,693 4686
A10 48,540 15,221
A9 17,646 1991
A8 7442 684
A7 18,889 2162
A6 6989 453
A5 4304 0
A4 8926 3613
A3 1902 1535
A2 623 623

A1 = New Taipei City, A2 = Taoyuan City, A3 = Hsinchu County, A4 = Miaoli County, A5 = Taichung City,
A6 = Changhua County, A7 = Yunlin County, A8 = Chiayi County, A9 = Tainan City, A10 = Kaohsiung City,
A11 = North Pingtung, A12 = Hengchun Peninsula, A13 = Liuchiu Island, A14 = Taitung County, A15 = Hualien
County, A16 = Yilan County.

The largest extent of coral coverage was found in the Hengchun Peninsula (44.69%),
followed by Taitung (38.21%), New Taipei City (30.55%), Hualien (26.88%), Yilan (23.02%),
and Liuchiu Island (15.70%) (Table 6).

Table 6. The geographical distribution of the coral cover used in this study.

Area %

A1 27.56
A16 23.02
A15 26.88
A14 38.21
A12 44.69
A13 15.70
A11 0
A10 0
A9 0
A8 0
A7 0
A6 0
A5 0
A4 0
A3 0
A2 0

A1 = New Taipei City, A2 = Taoyuan City, A3 = Hsinchu County, A4 = Miaoli County, A5 = Taichung City,
A6 = Changhua County, A7 = Yunlin County, A8 = Chiayi County, A9 = Tainan City, A10 = Kaohsiung City,
A11 = North Pingtung, A12 = Hengchun Peninsula, A13 = Liuchiu Island, A14 = Taitung County, A15 = Hualien
County, A16 = Yilan County.

Results of principal component analysis (PCA) on water quality data from 16 coastal
districts in Taiwan between 2017 and 2021 revealed that the first (PC1) to fourth (PC4)
principal components explained 68.42% of the overall water quality variation (Table 7).
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Among these components, the loadings of salinity, ammonium, nitrate-nitrogen, nitrite-
nitrogen, phosphate, and silicate on the first component axis (PC1) were relatively high,
with salinity having a negative value and the other nutrients having positive values. These
results were indicative of the effects of nutrient input from freshwater rivers into the sea.
Therefore, we named this component axis “river-derived nutrients”. Variance analysis of the
component scores through this axis showed that river-derived nutrients were significantly
higher in northern Pingtung and significantly lower in the Hengchun Peninsula, Yilan,
Hualien, and Taitung (Table 8).

Table 7. The loadings of the principal components (PC) 1–4 for abiotic variables assessed in this study
area (N = 134).

Variables PC1 PC2 PC3 PC4

Temperature −0.10 −0.12 0.00 −0.87
Salinity −0.71 0.03 0.02 0.51
Dissolved oxygen −0.04 0.83 0.02 0.39
Dissolved oxygen saturation −0.20 0.89 0.03 −0.00
A chlorophyll-a 0.13 0.71 −0.07 −0.07
Ammonium 0.51 0.05 −0.06 0.04
Nitrate-nitrogen 0.89 −0.08 0.02 0.19
Phosphate 0.58 −0.01 −0.06 0.52
Nitrite-nitrogen 0.69 0.08 0.06 −0.02
Silicate 0.87 −0.21 0.00 0.07
Copper −0.08 −0.04 0.89 0.03
Zinc −0.04 −0.05 0.77 −0.23
Lead 0.10 0.05 0.80 0.16

Eigenvalues 3.22 2.06 2.04 1.57
Total variance (%) 20.73 40.60 56.32 68.42

The second component axis (PC2) (Table 8) had larger loadings for dissolved oxygen,
saturated dissolved oxygen, and chlorophyll a. All of these values were positive, and we
posited that this was indicative of vigorous photosynthesis by phytoplankton, which is an
oxygen-releasing process. We, therefore, named this axis “phytoplankton photosynthesis”.
Results of variance analysis revealed that phytoplankton photosynthesis was significantly
higher in northern Pingtung and significantly lower in Yilan, Hualien, Keelung, and the
Hengchun Peninsula.

The third component axis (PC3) (Table 8) had larger loadings of copper, zinc, and lead,
indicating that these three heavy metals were found together. Therefore, this component
axis was named “heavy metals”.

The fourth component axis (PC4) (Table 8) had larger loadings of water temperature
and salinity, with the former being negative and the latter being positive overall. In Taiwan,
the low winter water temperature coincides with the dry season, which is characterized by
reduced river flow and freshwater input to the sea. Therefore, this component axis was
named “seasonal variation”.

In SEM, squares represent observed variables while circles represent latent variables
estimated and identified by observed variables [38,42]. Path coefficients between envi-
ronmental and biological latent variables range from −1 to 1, with the absolute value
indicating the degree of influence of a given latent variable. Solid lines indicate significant
effects while dotted lines indicate insignificant effects, with arrowheads indicating the
direction of influence. Figure 2 presents the ecological model constructed in this study.
Specifically, our model was constructed by combining environmental data, fishery statistics,
water quality data, coral data, and sea turtle data. The latent variables used in this model,
including “nutrients (−) from rivers”, “phytoplankton photosynthesis”, and “heavy met-
als”, were derived from the principal component analysis of water quality in the model.
The latent variable “fishing disturbance” was estimated using two measured parameters:
“the total number of all professional fishery personnel” and “the number of coastal fishery
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personnel”. The latent variables “coral colony density”, “stranded sea turtle quantity”,
and “offshore wind turbine effects” were estimated using a single measured variable:
“coral coverage area”, “the number of stranded turtles”, and “offshore wind turbine (unit)
operating quantity”, respectively.

Table 8. Results from two-way analysis of variance (ANOVA) tests and all pairwise multiple compar-
isons (using Duncan’s Method) on principal components 1 (PC1) to 4 (PC4).

(A) PC1

Variables
Two-Way ANOVA

Multiple Comparison*
F p-Value

Station 6.562 <0.001 A11a A7ab A8ab A5bc A6bc A13bc A2c A3c A4c
A1cd A9cd A10cd A12cd A14d A15d A16d

Season 2.491 0.065
Station × Season ** 1.383 0.136

(B) PC2

Variables
Two-way ANOVA

Multiple Comparison *
F p-value

Station 2.208 0.033 A11a A13ab A2abc A3abc A4abc A5abc A6abc A7abc
A8abc A9abc A10abc A14bc A15bc A16bc A12c

Season 2.352 0.077
Station × Season ** 0.9 0.601

(C) PC3

Variables
Two-way ANOVA

Multiple Comparison
F p-value

Station 0.631 0.75
Season 0.773 0.512
Station × Season ** 0.451 0.986

(D) PC4

Variables
Two-way ANOVA

Multiple Comparison *
F p-value

Station 7.062 <0.001 S4aS1bS3bS2c

Season 65.28 <0.001 A1aA5aA6aA2abA3abA4abA14bcA15bcA16bcA12bcd
A9cdA10cdA13cdA7dA8dA11d

Station × Season ** 1.917 0.014
* = Compared using Duncan’s Method. Statistically significant differences (p < 0.05) are indicated by different
small letters. ** =Interaction of Station and Season. A1 = New Taipei City, A2 = Taoyuan City, A3 = Hsinchu
County, A4 = Miaoli County, A5 = Taichung City, A6 = Changhua County, A7 = Yunlin County, A8 = Chi-
ayi County, A9 = Tainan City, A10 = Kaohsiung City, A11 = North Pingtung, A12 = Hengchun Peninsula,
A13 = Liuchiu Island, A14 = Taitung County, A15 = Hualien County, A16 = Yilan County. S1 = Spring,
S2 = Summer, S3 = Autumn, S4 = Winter.

In our model, “nutrients (−) from rivers” and “phytoplankton photosynthesis” had
significant effects on “coral density”, with coefficients of 0.22 and −0.40, respectively. The
former indicates that environments characterized by excessive nutrient input from rivers
are not suitable for coral growth, while the latter indicates that areas characterized by
vigorous phytoplankton photosynthesis are also unsuitable (because they are likewise
nutrient-rich, eutrophic environments). With regard to the impact of “nutrients originating
from rivers” and “photosynthesis of phytoplankton” on the “stranded sea turtle quantity”,
the values of 0.08 and −0.02, respectively, indicate that the nutrients brought by rivers and
the strength of photosynthesis in the water were not related to the stranding of sea turtles.
Conversely, “heavy metals” and “fishing disturbance” had significant and positive effects
(0.24 and 0.26, respectively) on the stranded sea turtle quantity. The impact of “offshore
wind turbine effect” on stranded sea turtles (a key focus of this study) was not significant
at 0.06. This strongly suggests that, to date, the installation of wind turbines in Miaoli and
Changhua has not directly increased the number of sea turtle strandings.
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4. Discussion

Knowledge of the interactions between offshore wind farms and sea turtles in foraging
areas/migratory corridors in Taiwan remains very limited. This is the first study to employ
SEM and data from multiple databases to conduct quantitative analysis and establish a
model to elucidate the potential causes of sea turtle strandings in Taiwan. This study
analyzed the coastal areas of major counties and cities in Taiwan using publicly available
water quality data.

In the present study, the C. mydas was the most frequent species involved in stranding.
As has been found in previous studies, the green turtle is the most common species of sea
turtle in Taiwan [3,10,44,45]. Furthermore, green turtle strandings have been recorded more
frequently than other species in all regions of Taiwan [34,45,46]. We also found that coastal
areas of densely populated western regions were characterized by greater eutrophication
and land-based pollution than coastal areas in the eastern, northern, and southern regions.
The water quality monitoring station of Pingtung is adjacent to Donggang Creek, where the
livestock industry is highly developed and eutrophication is most severe, while areas with
fewer river-derived nutrients were associated with sparsely populated eastern counties
and better river water quality (in most cases). Lower nutrient concentrations can also
be explained by the dilution effect of the Pacific Ocean and the lack of large rivers in
the Hengchun Peninsula. The high level of photosynthesis in northern Pingtung can
be primarily explained by the severe eutrophication of Donggang Creek, while lower
photosynthesis levels are found in marine areas that are strongly diluted by the eastern
ocean and do not feature large rivers that input high amounts of land-based pollutants.
The study conducted by Liu et al. (2015) [47] suggested that southwestern Taiwan is also a
highly problematic region for coastal eutrophication. With regard to the possible effects
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of the increased eutrophication in these areas on the populations of sea turtles, previous
studies also found that fibropapillomatosis (FP) is more prevalent in areas exposed to
greater eutrophication [48–50]. FP is a tumor-forming disease that affects all sea turtle
species and is most common in green turtles [5]. Reports on FP in green turtles in Asia are
still very limited. However, the disease has recently been described in endangered green
turtles in Taiwan [6,44,51].

SEM is a powerful multivariate statistical technique increasingly used in scientific
research to evaluate and test multivariate causal relationships [42]. In addition, over the
past 20 years ecologists have applied SEM to test multi-variable hypotheses. The complex
networks of causal relationships in ecosystems can be analyzed using SEM [40–42]. In
terms of the SEM results (Figure 2), the SEM indicated that coral colony density had a posi-
tive effect on the number of turtle strandings. The green turtle is the most common species
of sea turtle in Taiwan [3]. Because green turtles mainly feed on seagrass, seaweed, and in
coral reef terrains [43,52,53], the highly significant positive correlation between “coral den-
sity” and “stranded sea turtle quantity” of 0.72 (Figure 2) revealed that suitable coral reef
habitats attracted a large number of sea turtles, which may naturally result in larger num-
bers of stranded sea turtles (e.g., anthropogenic interactions). In other words, the majority
of green turtles in this study were identified to be juveniles (CCL < 67 cm) to sub-adults
(CCL 67–84 cm) (Table 2) and were more likely to be resident animals (neritic-stage) [32].
As such, they are more likely to be affected by anthropogenic activities due to their high
dependence on coastal feeding grounds and frequent use of nearshore habitats [2,32].

Regarding fishing disturbance and stranding, the SEM (Figure 2) showed a significant
effect of fishing disturbance on the number of stranded sea turtles (0.26). Previous literature
has reported that bycatch, net entanglement, and collisions with ocean vessels can cause
significant harm to sea turtles [28]. In addition, sea turtle strandings in the Mediterranean
are also strongly linked to bycatch: according to a 14-year annual study [30], more than half
of loggerhead sea turtle (C. caretta) strandings were the result of human activities such as
fishing. In Turkey, strandings were primarily caused by bycatch and marine pollution [31].
Another study reported that the mortality of loggerhead, olive ridley, and leatherback sea
turtles in southern Brazil was also associated with fishing activities in feeding habitats or
in migratory corridors between breeding and feeding areas [32]. In a study conducted in
Hawaii and the insular Pacific, the main reasons for sea turtle strandings were bycatch and
collision (excluding FP) [33]. Bycatch was identified as a significant concern for sea turtles
in Spain and Taiwan [30,34]. In Taiwan, a report titled “Twenty-three Years of Sea Turtle
Stranding/Bycatch Research in Taiwan” indicated that eighty percent of the sea turtles that
were stranded or caught had already perished [34]. One report by Chen et al. (2012) [46]
indicates that fishery bycatch is likely the cause of stranded sea turtle mortality in Taiwan. In
addition to coral colony density, ocean currents and wind may also influence the detection
of sea turtle strandings. The lack of data on ocean currents and wind in our study is a
limitation of this study.

With regard to heavy metals, we also observed higher concentrations of heavy metals
in waters where there were more sea turtle strandings. Although this study cannot confirm
whether high levels of heavy metals are harmful to the health of wild sea turtles, other re-
searchers have raised concerns about heavy metal pollution in sea turtle habitats [2,9,54–56].
In fact, it has been suggested that sea turtles’ immune systems may be more susceptible to
the harmful effects of heavy metals than those of other vertebrates [54,56]. As a consequence
of the aforementioned circumstances, the current study focused on threats from environ-
mental contaminants, a priority area of research for marine sea turtle conservation [4,57].
Fibropapillomatosis (FP), for example, is a tumor-forming disease that affects all species of
sea turtles and is most commonly found in green turtles [5,6,11,12]. A higher prevalence
of FP in sea turtles has been documented in highly contaminated marine environments or
environments with poor water quality [48,49,58,59]. Reports of FP in sea turtles in Asia
are still very limited. However, cases of FP have been discovered in Taiwanese waters
in recent years [6,44,51]. Another issue related to environmental contaminants in marine
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ecology research is that the green turtles in Taiwan may have encountered coastal pollution
containing antimicrobial agents or heavy metals when they migrated to nearshore feeding
areas after recruitment. [2]. As a consequence of the aforementioned circumstances, in
order to benefit sea turtle conservation, future research should focus on how to prevent
pollution in the main sea turtle activity areas in Taiwan.

Our findings suggest that offshore wind turbines do not have a significant impact
on sea turtle strandings. Although our results cannot determine whether offshore wind
turbines lead to physiological disturbances in sea turtles that cause them to leave an area,
our results can serve as an important reference in future evaluations of wind turbine
installations. Note that in this study, the offshore wind turbines located in Miaoli and
Changhua, Taiwan are not situated in sea turtle foraging hotspots or significant migratory
corridors for sea turtles. Satellite tracking studies to date do not provide conclusive
evidence that the Miaoli and Changhua Sea are hot spots for sea turtle foraging, or that
they are significant sea turtle migration corridors [3,10,27,45]. However, the impact of
offshore wind turbines on sea turtles may include collisions with these reptiles caused
by the working boats of wind turbines [18], undersea sounds created by wind turbines
such as pile driving [19,20], and local magnetic disturbances generated by cables may
have negative impacts on sea turtles [21,22,60,61]. Therefore, the potential impact of
offshore wind turbines on sea turtles needs to be further investigated in the future. It is
essential for sea turtle conservation management to document important foraging sites
and the composition and numerical importance of foraging aggregations [62]. Further
study of sea turtle movements (e.g., satellite tracking) in these areas should be pursued
to characterize their main foraging areas and ultimately to assess their interactions with
human activities in these habitats. Furthermore, as new molecular and genetic technologies
(e.g., environmental DNA, eDNA) are developed, it is possible to adapt and optimize them
for sea turtle conservation. For example, eDNA detection has complemented traditional
in-water monitoring of sea turtles by allowing detection even when turtles have not
been visually observed [63]. Therefore, eDNA techniques could be a viable and efficient
alternative to traditional sea turtle monitoring methods.

5. Conclusions

In conclusion, to the best of our knowledge, this is the first study to unravel the
complex relationships between environmental factors, anthropogenic interactions, and sea
turtle strandings in Taiwan. The results of the SEM indicated that coral colony density,
heavy metals, and fishing disturbance had a significant influence on sea turtle stranding
events. As a result of the aforementioned circumstances, future analyses examining the
impact of offshore wind turbines in significant sea turtle habitats ought to be conducted.
Additionally, to conserve endangered sea turtles, we recommend applying PCA and
SEM techniques to determine potential causes of sea turtle strandings and verify their
direct and indirect effects in other areas of concern to establish upcoming environmental
impact assessments.
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