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1.  INTRODUCTION

The global ocean contains unique biodiversity,
life forms and genetic resources that provide eco-
system services of enormous value to humans
(Worm et al. 2006, Sala et al. 2021). At the same
time impacts of human activities on the ocean are
substantial, ubiquitous and rapidly changing
(Halpern et al. 2019). Large marine predators are

important top consumers in marine ecosystems, and
their depletion can have cascading effects on lower
trophic levels (Block et al. 2011). Seabirds are one
of the most threatened groups of vertebrates, with
almost half of all species (47%) experiencing popu-
lation declines (Dias et al. 2019). As top predators,
seabirds play key roles in marine ecosystems, mak-
ing their conservation critical (Grémillet et al.
2018).
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ABSTRACT: Many seabird species undergo extensive seasonal migrations, often across large mar-
ine ecosystems or between marine areas under different national jurisdictions. With the advances
of electronic tracking, especially of the application of Global Location Sensors (GLS or geoloca-
tors), it is now possible to study the seasonal movements of seabirds and link breeding populations
to non-breeding habitats. To take full advantage of this development for better management and
conservation, and to broaden the scope of scientific questions that can be assessed, there is a need
for large-scale and multi-species programmes. The SEATRACK project with partners from 10 coun-
tries is ongoing and aims to identify the year-round distribution and movements of seabirds breed-
ing in colonies across the northern part of the North Atlantic. By 2020, 14534 loggers were de -
ployed on 11 species, and data from 5440 retrieved loggers have been analyzed and compiled.
This Theme Section assembles original research articles based on data collected as part of the
SEATRACK project from 2014 to 2019. A series of 11 papers advances the knowledge within 4
research themes: (1) variation in migration strategies among individuals, populations and species;
(2) linking migration strategies and winter distribution to seabird demography and population
dynamics; (3) linking migration and winter distribution to contaminants in seabirds and (4) the use
of GLS data in marine spatial planning. We review existing literature within SEATRACK’s 4 themes
with a focus on the temperate and arctic zones of the North Atlantic to provide a framework within
which to discuss the 11 contributions and provide recommendations for future research.
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The North Atlantic supports some of the largest
seabird populations in the world, especially in its
northern part (Barrett et al. 2006, Frederiksen 2010).
Many have declined dramatically over recent de -
cades, resulting in several species now being listed
in national and international lists of threatened spe-
cies (Croxall et al. 2012, Dias et al. 2019). Outside the
breeding season, most seabirds migrate far from
their colonies and sometimes range over large areas
(Harrison et al. 2018, Alerstam et al. 2019). To ensure
suitable conservation actions, it is essential to have
good knowledge of the population distributions in
time and space and of the environmental factors that
affect these populations. Until recently, it has been
difficult to follow large-scale migratory movements,
especially among small species, and most of our
knowledge has been based on band recoveries,
which may give biased results (Clark et al. 2009). The
emergence and advances of light-level geolocators
(also known as Global Location Sensors [GLS]; Wil-
son et al. 1992, Hill 1994, Wilson & Vandenabeele
2012) has, however, enabled us to study such move-
ments in much greater detail, providing new and
crucial knowledge for the management of seabirds
and their marine habitats (Tremblay et al. 2009,
Block et al. 2011). To be able to take full advantage of
this development and to broaden the scope of scien-
tific questions that can be answered, multi-year,
multi-site and multi-species studies are ne cessary
(Schimel & Keller 2015, Bernard et al. 2021).

The SEATRACK project (https:// seapop.no/ en/
seatrack/) was initiated in 2014 with the main goal
to assess the non-breeding distribution of seabirds
breeding in colonies across the Barents, Norwegian

and northern North Seas (i.e. colonies in Russia, Nor-
way [including Svalbard and Jan Mayen], Iceland,
the Faroes and the UK). Eleven species were selected
as focal species, representing 5 ecological groups or
foraging guilds (Fauchald et al. 2011): pelagic divers,
pelagic surface feeders, coastal surface feeders,
coastal diving species and coastal benthic feeders
(Table 1). By doing this, the tracked species could be
used as indicators of the seabird community as a
whole. Thirty-nine colonies that covered most of the
breeding distribution of these 11 species were
selected initially. In 2019, the geographical focus was
extended to cover the North Atlantic north of 48° N,
and 18 additional colonies in Ireland, west Scotland,
Greenland and Canada were included (Fig. 1, Table
S1 in the Supplement at www. int-res. com/ articles/
suppl/ m676p097 _ supp.pdf). More than 60 scientists
from 10 countries have taken part in the collabora-
tion up to the present.

From 2014 to 2020, 14 534 GLS were deployed fol-
lowing a standard field protocol (available at https://
seapop.no/en/seatrack). GLS are light (0.5−3.5 g)
archival tags with a clock and a light-level sensor.
Timing of the twilight events (sunrise and sunset) is
determined from the light-level recordings to obtain
positions. Latitude is estimated from daylength, lon-
gitude from time of solar midnight/noon. Average
error is usually ~200 km (Lisovski et al. 2012), and
due to their relatively low precision, geolocators are
most appropriate for tracking large scale movements
(Phillips et al. 2004). GLS also store information of
when the logger is in contact with salt water, and
some models record temperature when submerged.
By 2020, data from 5440 retrieved loggers were ana-
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Forag.                Species                   Col.             No. of geolocators         Total N                 Individuals per year-track
guild                                                               Deployed     Retrieved    Succ. downl.    Birds    Positions      1 yr    2 yr    3 yr    4 yr    5 yr   6 yr

PDi                Atlantic puffin               17          2431              805                670             453       385 104       234    115     72      23       8        1
                Brünnich’s guillemot          16          1862              835                762             422       400 026       179     92      76      48      22       5
                  Common guillemot           12          1848              995                868             435       502 539       153    121     71      56      26       8
                          Little auk                    5            875               280                244             182        96 953        120     43      17       2        0        0
PSu        Black-legged kittiwake        21          3028             1558              1401            775       846 434       349    172    134     70      33      17
             Lesser black-backed gull       8            341                55                  48               37         39 706         14      14       6        3        0        0
                    Northern fulmar             17          1210              547                505             293       313 451       115     78      46      29      19       6
CSu               Glaucous gull                 5            542               158                150             106        66 808         49      36      12       5        4        0
                       Herring gull                 11           403                73                  51               43         47 589         15      16       8        3        1        0
CDi               European shag                8            916               410                355             202       208 178        89      57      28      17       6        5
CBe               Common eider                9           1078              508                386             274       258 696       132     80      33      23       4        2
                             Total                                    14 534            6224              5440           3222     3 165 484     1449   824    503    279    123     44

Table 1. Foraging guilds, species, numbers of breeding colonies, light-level geolocators deployed, retrieved and successfully downloaded,
the total number of individual birds and filtered positions, as well as the number of years tracked per individual over the period 2014−2020.
PDi = pelagic divers, PSu = pelagic surface feeders, CSu = coastal surface feeders, CDi = coastal divers, CBe = coastal benthic feeders. In 

total, 57 colonies were studied 

https://www.int-res.com/articles/suppl/m676p097_supp.pdf
https://www.int-res.com/articles/suppl/m676p097_supp.pdf
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lyzed and compiled (Table 1). The protocol for ob -
taining positions from the raw light measurement,
including filtering procedures is described in Bråthen
et al. (2021). The SEATRACK website (https:// sea
track. seapop.no/map/) presents seasonal distribution
maps for all species and colonies.

The overreaching goal of SEATRACK is to identify
the distributions of non-breeding seabirds from col -
onies in the North Atlantic in order to better under-
stand how changes in environmental conditions en -
countered during migration or on the winter grounds
affect their demography and population dynamics.
Four main research themes have been defined to
address these objectives: (1) the assessment of varia-
tion in migration strategies among individuals, popu-
lations and species; (2) the linkage of migration
strategies and winter distribution to demography and
population dynamics; (3) the linkage of non-breed-
ing distribution to contaminants and (4) the use of
tracking data in marine spatial planning.

This Theme Section assembles 11 original research
articles based on data collected as part of the
SEATRACK project from 2014 to 2019 cover topics

from all 4 research themes. Collectively, these contri-
butions advance our knowledge of the non-breeding
distribution and migration of North Atlantic seabirds
and their impact on demographic parameters. This
knowledge is essential for a sustainable manage-
ment of seabird populations and marine ecosystems.
In the present introductory paper, we review existing
literature within SEATRACK’s 4 themes with a focus
on the temperate and arctic zones of the North
Atlantic to provide a framework within which to dis-
cuss the 11 contributions and give recommendations
for future research.

2.  VARIATION IN MIGRATION STRATEGIES

2.1.  Migration strategies and non-breeding
 movements

There is a substantial diversity in migration strate-
gies among North Atlantic seabirds, from resident or
short-distance to long-distance migrants (Daunt et al.
2006, Egevang et al. 2010, Dufour et al. 2021 in this
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Fig. 1. Colonies included in SEATRACK where light-level geolocators have been deployed since 2014 (red dots) or since 2019 
(yellow dots)
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Theme Section). Although some species are trans-
equatorial migrants and may experience an ‘endless
summer’ (e.g. Arctic tern Sterna paradisaea, Ege vang
et al. 2010; Sabine’s gull Xema sabini, Stenhouse et
al. 2012; long-tailed skua Stercorarius longicaudus,
Gilg et al. 2013; Cory’s shearwater Calo nectris bore-
alis, Dias et al. 2012; Manx shearwater Puffinus puffi-
nus Guilford et al. 2009; Leach’s storm petrel Ocean-
odroma leucorhoa, Pollet et al. 2019; Bulwer’s petrel
Bulweria bulwerii, Dias et al. 2015), most species
migrate to lower latitudes and remain in the North
Atlantic throughout the year (e.g. Anker-Nilssen et
al. 2000, Fort et al. 2013, Mc Farlane Tranquilla et al.
2013, White et al. 2013, Amélineau et al. 2021 in this
Theme Section). By doing so, the seabirds benefit
from longer periods of daylight for feeding, but they
may also migrate to lower latitudes for other reasons,
such as more favourable food availability, weather
and sea-ice conditions (Gilg et. al. 2010, Fort et al.
2013). Some populations or individuals may, how-
ever, stay at high latitudes during winter and thus
experience the polar night (Table 2). These seabirds
are generally diurnal and visual predators such that

finding food when there is no or very little light may
prove challenging. European shags Phalacrocorax
aristotelis, for example, survive such conditions in
northern Norway by concentrating their foraging
during the available twilight (Moe et al. 2021 in this
Theme Section). Twilight foraging has also been
observed in great cormorants Phalacrocorax carbo
and Steller’s eiders Polysticta stelleri in northern
Norway, where they adjust their foraging times to -
wards midday as winter progresses (Johansen et al.
2001, Systad & Bustnes 2001). Great cormorants in
western Greenland, however, forage extensively in
darkness (Grémillet et al. 2005), suggesting that div-
ing birds may have the capacity to use non-visual
cues to target fish. Some seabirds may also be ex -
posed to artificial light from boats, installations and
harbours. Dupuis et al. (2021 in this Theme Section)
showed that foraging activity by the northern fulmar
Fulmarus glacialis may be associated with artificial
light from fishing vessels, but whether (or to what
degree) the artificial light may help the fulmar locate
the fishing vessels rather than target the offal and
unwanted catch as they are discarded is not known.
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Group (family)/species                                       Breeding population                                         Proportion of                  References
                                                                                                                                                          individuals

Sea ducks (Anatidae)                                                                                                                                                                       
Common eider (Somateria mollissima)             Spitsbergen                                                              Small                 Hanssen et al. (2016)
                                                                             Barents Sea region, northern Norway                    High            Anker-Nilssen et al. (2000)a

King eider (S. spectabilis)                                  Northern Russia                                                       High                  Bustnes et al. (2010)
Steller’s eider (Polysticta stelleri)                      Northern Russia                                                       High               Systad & Bustnes (2001)

Alcids (Alcidae)                                                                                                                                                                                
Black guillemot (Cepphus grylle)                      Barents Sea region, northern Norway                    High            Anker-Nilssen et al. (2000)a

Common guillemot (Uria algae)                        Bjørnøya, northern Norway and Russia                 High               Amélineau et al. (2021)
Brünnich’s guillemot (U. lomvia)                       Novaya Zemlya, Kola Peninsula, Spitsbergen       High               Amélineau et al. (2021)
Atlantic puffin (Fratercula arctica)                    Finnmark/northern Norway                                    High               Amélineau et al. (2021)
Little auk (Alle alle)                                            Franz Josef Land                                                      High               Amélineau et al. (2021)

Gulls (Laridae)                                                                                                                                                                                  
Black-legged kittiwakes (Rissa tridactyla)       Novaya Zemlya                                                    Moderate                Ezhov et al. (2021)
                                                                             North Atlantic                                                      Very small          Frederiksen et al. (2012)
Glaucous gulls (Larus hyperboreus)                 Barents Sea region                                          Moderate/high   Anker-Nilssen et al. (2000)a

Herring gulls (L. argentatus)                             Barents Sea region, northern Norway           Moderate/high   Anker-Nilssen et al. (2000)a

Great black-backed gull (L. marinus)               Barents Sea region, northern Norway           Moderate/high   Anker-Nilssen et al. (2000)a

Fulmars (Procellariidae)                                                                                                                                                                  
Northern fulmar (Fulmarus glacialis)               Spitsbergen, Bjørnøya                                             High               Amélineau et al. (2021)
                                                                             North Atlantic                                                      Very small           Amélineau et al. (2021)

Cormorants and shags (Phalacrocoracidae)                                                                                                                                 
European shag (Phalacrocorax aristotelis)       Northern Norway                                            Moderate/high            Moe et al. (2021)
Great cormorant (P. carbo)                                 Western Greenland                                                 Small                   White et al. (2013)
                                                                             Northern Norway                                            Moderate/high       Johansen et al. (2001)a

aResults from Anker-Nilssen et al. (2000) and Johansen et al. (2001) are not based on tracking data and specific breeding populations,
or proportions are not well known

Table 2. Examples of populations that remain at high latitudes in winter and experience the polar night, along with the approximate proportion 
(based on subjective assessments of the publications) of individuals using this strategy
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Seabirds generally migrate along the coast or off-
shore (Dias et al. 2011, Klaassen et al. 2012, Dias et
al. 2015), but some populations or individuals may
migrate over land (Bustnes et al. 2013, Wynn et al.
2014, Wikelski et al. 2015, van Bemmelen 2019).
While many terrestrial birds or shorebirds fly non-
stop over long distances (the most extreme example
is the bar-tailed godwit Limosa lapponica baueri that
may fly non-stop for ~10 000 km across the Pacific
Ocean; Gill et al. 2009), seabirds can to a varying
degree forage in the ocean during their journey.
They may, however, be challenged by areas where
ocean productivity and food availability are low or
wind conditions less favorable. The decision to fly
over these areas or to slow down to forage and rest,
based on experience of previous or current condi-
tions, depends probably on the ratio of energy accu-
mulated while feeding to energy spent on travel
(Strandberg & Alerstam 2007). Accordingly, there
seems to be a range of strategies from continuous fly-
and-forage movements to distinct segments of direc-
tional and fast movements between staging/foraging
areas (McKnight et al. 2013, Amélineau et al. 2021).
Furthermore, seabirds do not necessarily remain in a
single final non-breeding destination but may con-
tinue to move over relatively large ocean areas
throughout the non-breeding season. Seabirds gener-
ally use preferred routes to reach specific wintering
areas instead of dispersing in an arbitrary direction
from the colony (Amélineau et al. 2021). Segments of
movements have previously been identified through-
out the entire non-breeding season among long-tailed
skuas (van Bemmelen et al. 2017). Based on the
SEATRACK dataset, Amélineau et al. (2021) have
found that 6 pelagic species (fulmars, black-legged
kittiwakes Rissa tridactyca [hereafter kittiwake],
common guillemots Uria aalge, Brünnich’s guille-
mots Uria lomvia, little auks Alle alle, Atlantic puffin
Fratercula arctica [hereafter puffin]) had on average
3 to 4 migration phases and 2 to 3 distinct stationary
phases when they occupied different areas during
the non-breeding season. Differences in conductivity
data (indicating wet/dry locations of tracked birds)
and daily activity patterns were small between migra-
tory and stationary phases, suggesting that the tracked
birds continued to forage during the migration phases.
Different methods exist to separate migratory and
stationary phases, e.g. based on speed (Gilg et al.
2013) or net square displacement (Amélineau et al.
2021). We refer to migration as the movement during
such migratory phases. Since staging and final non-
breeding areas are destinations of migration, and
time spent in these areas determines time between

migration bouts, we also consider the staging and
non-breeding areas as part of the migration strategy.

2.2.  Migratory connectivity

Tracking studies, especially multi-colony, allow us
to identify the different areas used by different pop-
ulations during the non-breeding season (Frederik-
sen et al. 2012). Migratory connectivity describes the
link between the different breeding populations and
these non-breeding areas (Webster et al. 2002, Finch
et al. 2017). Migratory connectivity is strong when
breeding populations migrate to unique non-breed-
ing areas and the mixing of breeding populations
during the non-breeding period is low. Conversely,
migratory connectivity is weak when breeding popu-
lations share non-breeding areas and the mixing of
breeding populations is high (Webster et al. 2002).
Potential negative effects of perturbations or threats
in the non-breeding area should thus be stronger
within a population with strong migratory connectiv-
ity, while the effects on populations with weak migra-
tory connectivity should be more diffuse, since only
some of the individuals would be exposed to the
threat. Population spread is an important aspect of
migratory connectivity, and depends on the size of
the occupied non-breeding area. Populations winter-
ing within a smaller area (i.e. low spread) may be
more vulnerable to perturbations and threats than
those in a large area, where there may be more
opportunities for finding unaffected patches.

An increasing number of studies has demonstrated
a large variation in migration strategies, routes and
destinations between and within populations of the
same North Atlantic seabird species (Frederiksen et
al. 2012, 2016, Dean et al. 2015, Fayet et al. 2017a,
van Bemmelen et al. 2017, Merkel et al. 2021a, 2021b
in this Theme Section, Moe et al. 2021). For example,
in 2 sympatric meta-populations of common and
Brünnich’s guillemots in the Northeast Atlantic,
Merkel et al. (2021b) showed that different breeding
populations had specific non-breeding habitats im -
plying a strong migratory connectivity. This was ap -
parent through a combination of seasonal space use
and occupied environmental niches. Frederiksen et
al. (2012) found a high degree of mixing among 19
kittiwake populations in a core wintering area in the
Northwest Atlantic. Since this wintering area is very
large, a local threat such as a spatially restricted oil
spill would only affect a relatively small part of the
area occupied by kittiwakes. By contrast, a large-
scale ecosystem change occurring in this area due to
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e.g. climate change could effectively impact the en -
tire population of kittiwakes in the North Atlantic. In
other words, the effect of connectivity and spread on
the vulnerability of populations is a matter of scale.

Individual arctic skuas Stercorarius parasiticus
from northern Norway spread out and target differ-
ent winter locations in the North Atlantic (Gulf of
Mexico, Caribbean Sea, the Mediterranean Sea and
Canary Current), South Atlantic (Falkland Current,
Benguela Current) and Indian Ocean. In the North
Atlantic wintering areas, they mix with arctic skuas
from other colonies (van Bemmelen et al. 2019). As a
result, this species represents an extreme end of the
continuum for population spread and inter-popula-
tion mixing. Kittiwakes breeding in Novaya Zemlya
in northern Russia are another particular example of
population spread (Ezhov et al. 2021 in this Theme
Section). Within this population, a remarkable migra-
tory divide is apparent, with some individuals migrat-
ing across the Arctic Ocean to winter in the Pacific,
while the rest winter in the North Atlantic. Ezhov et
al. (2021) suggest that the migratory divide reflects
the genetic origin and early migration strategies of
the Pacific and Atlantic black-legged kittiwakes that
colonized Novaya Zemlya. Such trans-polar migra-
tion might also become more frequent as a pheno-
typic response to global warming and reduced sea
ice in the Arctic Ocean (Clairbaux et al. 2019).

2.3.  Individual consistency

Individual consistency is another aspect of the
migration strategies important for the vulnerability of
seabirds to environmental changes, perturbations
and threats (Phillips et al. 2017). Paradoxically, the
life history and mobility of seabirds may lead to con-
trasting expectations. On one hand, seabirds are
highly mobile and could be expected to be flexible
and respond to environmental changes. On the other
hand, seabirds are long-lived animals that can be
highly consistent in their migration strategies due to
tightly scheduled migration itineraries and fixed de -
pendency on specific sites (Phillips et al. 2017). Indi-
viduals with fixed migration strategies could thus be
more vulnerable to environmental changes along fly-
ways and in their non-breeding areas (Phillips et al.
2017). Common and Brünnich’s guillemots show con-
sistent strategies indicating fidelity to specific sites
rather than to specific habitats (Merkel et al. 2021a).
If the locations of favourable habitats change, such
species may not be able to adjust their migration
strategies and non-breeding distributions sufficiently.

Individuals with fixed and consistent migration strate-
gies may also be repeatedly exposed to the same
environmental conditions or threats (such as pollu-
tion) over successive non-breeding seasons.

There seems to be a continuum from consistent to
flexible migration strategies among North Atlantic
seabird populations and species. Some individual
Cory’s shearwaters are very flexible and shift non-
breeding destinations between hemispheres in the
Atlantic Ocean (Dias et al. 2011), whereas individual
Arctic skuas are very consistent in their non-breed-
ing areas (van Bemmelen 2019). Most seabird studies
show rather high fidelity and consistency of individu-
als to the same region in the non-breeding season
(Merkel et al. 2021a, Phillips et al. 2017), whereas
routes, staging areas or timing of migration are
somewhat more flexible (Dias et al. 2011, McFarlane
Tranquilla et al. 2014, Müller et al. 2014, but see
Phillips et al. 2017). From 10 yr of geolocation track-
ing data, Léandri-Breton et al. (2021 in this Theme
Section) showed that kittiwakes were rather consis-
tent in targeting wintering sites across years but
more flexible in time, i.e. duration on the winter
grounds and timing of departure and arrival. The
degree of consistency may also depend on the size of
the wintering area considered. For example, individ-
uals may show high fidelity to a large wintering area
but at the same time move considerably within this
area (Guilford et al. 2011, van Bemmelen et al. 2017,
Léandri-Breton et al. 2021). Furthermore, individuals
from the same population may also exhibit different
levels of consistency, with some visiting more non-
breeding areas, as shown for long-tailed skuas and
kittiwakes (van Bemmelen et al. 2017, Léandri-Bre-
ton et al. 2021).

Among puffins, individuals from some colonies
show a dispersive migration and spread in virtually
all directions away from the colonies (Guilford et al.
2011, Fayet et al. 2017a, Amelineau et al. 2021).
However, adults nevertheless show high consistency
in their migration strategies and target the same win-
tering areas every year. From this pattern, Guilford
et al. (2011) proposed the explorative-refinement
hypothesis for the development of migration routes
in seabirds as an alternative to 2 earlier hypotheses
concerning genetic control or social learning (Fayet
2020). Guilford et al. (2011) proposed that young sea-
birds that fledge from their colonies without being
escorted by their parents have a phase of dispersion.
The immature birds subsequently acquire more ex -
perience and gradually refine their migration strate-
gies to become more consistent as adults. This hypo -
thesis has received support from tracking of 4 to 9 yr
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old immature Cory’s shearwaters (Campioni et al.
2020). However, more studies on post-fledging move-
ments are clearly needed to test this hypothesis. With
few exceptions (e.g. Ramos et al. 2019), post-fledging
movements and migration strategies have so far been
studied using satellite transmitters on larger species
like albatrosses and shearwaters (e.g. Weimerskirch
et al. 2006, Yoda et al. 2017, Orben et al. 2018). While
geolocators can be deployed on juveniles and imma-
ture individuals of smaller seabird species, recapture
is challenging, because mortality rates of juveniles
tend to be high, and birds that do not return to the
same subcolony are difficult to relocate. Due to the
difficulties in tracking the period from fledging to
recruitment, this period has been termed the ‘lost
years’. Obtaining data for those years will be particu-
larly important in future research.

3.  CONSEQUENCES OF MIGRATION
 STRATEGIES FOR SEABIRD DEMOGRAPHY AND

POPULATION DYNAMICS

Seabirds, by definition, spend most of their life at
sea, especially during the non-breeding season when
they are no longer central-place for-
agers. Differences in wintering areas
or migration routes can result in differ-
ent energetic costs (i.e. flight expendi-
ture) or benefits (i.e. food availability),
with potential fitness consequences
(e.g. Alves et al. 2013, Schultner et al.
2014a, but see Pelletier et al. 2020).
Understanding the drivers of such dif-
ferences in wintering strategies as
well as their potential carry-over ef -
fects on subsequent survival or repro-
duction is of primary importance to
understand population trajectories.
The importance of the non-breeding
season in the regulation of seabird
populations was highlighted more
than 50 yr ago (Lack 1966) and con-
firmed by subsequent empirical stud-
ies (e.g. Gaston 2003, Gilchrist & Mal-
lory 2005, Sæther et al. 2016 and see
Sections 3.1, 3.2 and 3.3 below). How-
ever, understanding the relationships
between sea bird demography and the
environmental conditions experienced
during the non-breeding period (Fig.
2) has proved extremely challenging.
We review evidence for North Atlantic

seabirds (in the temperate and polar zones only)
showing how the environment experienced during
migration or on the wintering grounds may affect
vital rates and dynamics.

3.1.  Linking non-breeding distribution and
 population dynamics

Most seabirds are long-distance migrants. Travel-
ling long distances may be energetically costly espe-
cially for species with high flight costs like the auks
(Elliott et al. 2013) and migrating birds often cross
unproductive areas to reach their non-breeding
grounds (e.g. Sahara Desert crossing, Strandberg et
al. 2010; transit across unproductive tropical waters
for trans-equatorial migrants, Egevang et al. 2010,
Gilg et al. 2010). The non-breeding season may also
be characterized by harsh environmental conditions
(e.g. Frederiksen et al. 2008, Guéry et al. 2019,
Reiertsen et al. 2021 in this Theme Section). Conse-
quently, environmental conditions experienced dur-
ing the non-breeding season are expected to have a
strong influence on seabird populations. However,
few studies have addressed the link between envi-
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Fig. 2. Conceptual links between seasonal habitats (i.e. during migration and
winter periods) and population growth of migratory seabirds. The background
map shows the winter distribution of Brünnich’s guillemots from Isfjorden in
west Spitsbergen, Svalbard (25, 50 and 75% probability contours [with in-
creasing colour intensity] of kernel distributions of geolocator tracking data
for the period 2012−2019 from https://seapop.no/en/seatrack/). Thick black
arrows: relationships between population growth rate and adult vital rates;
thin black arrows: relationships between individual body condition, (breed-
ing) phenology and vital rates; dashed blue and red arrows: effects of the envi-
ronmental conditions experienced during migration or on the winter grounds, 

respectively, on individual condition, breeding phenology or survival
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ronmental conditions during the non-breeding months
and seabird population dynamics in the North At -
lantic. Traditionally, such relationships have been
identified through the use of large-scale climatic in -
dices, notably the North Atlantic Oscillation (Thomp-
son & Ollason 2001, Drinkwater et al. 2003). Such
studies (e.g. Sandvik et al. 2005), however, have been
rather vague when it comes to identifying or inter-
preting the mechanisms behind these relationships,
as they were not able to identify which specific envi-
ronmental parameters in a particular wintering area
were driving the observed relationships. Very few
studies have ventured beyond such approaches, but
a handful have identified seabird winter distribution
using tracking (geolocator) data and infered the
environmental drivers of population trajectories. For
example, in the North Atlantic, a multi-colony track-
ing of Brünnich’s guillemots revealed a striking link
be tween non-breeding distribution and population
trends (Frederiksen et al. 2016). Virtually all popula-
tions that remained in the west Atlantic during the
winter were stable, while those wintering in the east-
ern part of the Atlantic (East Greenland and around
Iceland) were declining. This decline may be linked to
changes in the strength of the subpolar gyre that
affects the oceanographic conditions (and ultimately
prey availability) in this region (Descamps et al.
2013). Merkel et al. (2021) also found that the distri-
butions of different common guillemot populations in
the Northeast Atlantic relate to the variable popula-
tion trends. These results exemplify the usefulness of
combining tracking studies with long-term monitor-
ing data at a large spatial scale to better understand
changes in seabird populations. More studies linking
winter conditions to population trajectories in the
North Atlantic are required. Very little has yet been
done to extract key environmental parameters from
the core areas used by nonbreeding seabirds and to
link these to the trends or inter-annual fluctuations in
population sizes.

3.2.  Linking non-breeding distribution 
and adult survival

Whereas very few studies in the North Atlantic
have linked winter environmental conditions and
population growth rates, more have tested relation-
ships with specific demographic parameters such as
adult survival (Table 3). These studies concern 9 sea-
bird species, and the vast majority is recent (9 out of
11 were published in or after 2012; Table 3). They all
used capture-mark-recapture (CMR) modelling to es-

timate survival rates (including 2 that also considered
recruitment probabilities, based on multi-state or
multi-event modelling), and most were based on ge-
olocator data to identify seabird migration routes or
winter distribution (2 were based on band recoveries
only; Table 3). All identified significant relationships
between environmental conditions experienced during
the non-breeding season and annual survival. Be-
cause adult survival rates have a strong influence on
seabird population dynamics (Sæther & Bakke 2000),
these results support the key role played by environ-
mental conditions during the non-breeding season in
regulating seabird populations. Such a regulating
role is apparent in Reiertsen et al. (2021) and Reynolds
et al. (2011), who suggest that being ex posed to the
same environmental conditions during the non-breed-
ing season partly synchronizes inter-annual fluctua-
tions in puffin or common guillemot survival.

These results do not mean that winter environmen-
tal conditions are always the main and only driver of
seabird survival, and other phases of the non-breed-
ing season (e.g. autumn or spring migration) may
also play an important role. Descamps et al. (2021 in
this Theme Section) found that wintering in the same
area was not enough to synchronize adult survival
among different little auk populations. This suggests
that survival was also affected by conditions encoun-
tered during the rest of the year. This may sound like
a trivial conclusion, but it does stress the need to not
only consider the winter period when in vestigating
the main drivers of seabird survival, but also the
inward/outward migration periods (New ton 2007)
and the breeding season (e.g. Hovinen et al. 2014).
Identifying the habitat used by seabirds during these
different periods of their life cycle and as sessing the
relative importance of the periods in driving seabird
demography is critical but has rarely been done. Tools
and data now exist, and such research should be
given priority in order to understand how bird popu-
lations are regulated and to identify the key periods
and habitats.

Other studies also linked winter distribution to sur-
vival but without specifically considering environmen-
tal conditions. These studies compared the survival
rates among several groups of birds or populations
that had different migration strategies (Harris et al.
2013, Deakin et al. 2019, Pelletier et al. 2020). None
provided clear evidence that winter distribution of a
specific group of individuals (e.g. specific colony or
specific sex from a given colony) was clearly associ-
ated with their average survival (Table 3). Such lack
of clear relationships is not surprising considering
how sensitive individual fitness is to changes in adult
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survival in long-lived organisms like seabirds
(Sæther & Bakke 2000). Indeed, if a specific migra-
tion strategy was associated with lower adult sur-
vival, one would expect that it would rapidly disap-
pear from the population (assuming that migration
strategy has some genetic or social determinant,
which seems often to be the case; Pulido & Berthold
2003). The co-existence of different migration strate-
gies within the same population may thus indicate
that these strategies have a similar energy balance
(see Garthe et al. 2012 and Pelletier et al. 2020 for
examples on the northern gannet Morus bassanus)
and then similar fitness costs and benefits.

3.3.  Linking non-breeding distribution and
 reproduction

The environmental conditions experienced by sea-
birds in one season have the potential to affect their
life-history later in the annual cycle through carry-
over effects (Norris 2005, Norris & Taylor 2006).
Weather conditions and/or prey availability during
the non-breeding season may indeed impact the
body condition of individuals and their phenology
(e.g. arrival on the breeding grounds, migration de -
parture; e.g. Saino et al. 2004) which can subse-
quently affect their reproduction (e.g. Norris et al.
2004). Our review of North Atlantic seabirds (Table
3) identified 9 studies (on 7 species) that investigated
the carry-over effects of non-breeding distribution,
movements or activity on reproductive parameters.
Most of these studies were recent, 8 being published
in or after 2016. They confirmed that such carry-over
effects are not rare in seabirds and individual activity
(e.g. distance travelled) or distribution may affect
future breeding phenology or success (Table 3).
Interestingly, Dufour et al. (2021) found 2 very dis-
tinct migration strategies in the little auk breeding on
Svalbard: some birds spent the winter around the
southern tip of Greenland, while others halved the
migration distance by wintering north of Iceland.
Flight costs are expected to be very high for a diving
species like the little auk (Elliott et al. 2013), but,
nevertheless, the large difference in migration dis-
tance (1500 vs. 3100 km on average) between these 2
strategies had no detectable carry-over effect on
their reproduction (timing or success). This clearly
suggests that the extra energetic costs in birds
migrating longer distances can be offset by benefits
through e.g. better feeding conditions along or at the
end of the longer route (see Aharon-Rotman et al.
2016 for similar results in a shorebird).

The number of studies identified in our literature
review is too low to make general conclusions about
the general role and importance of the non-breeding
season in driving subsequent reproduction. How-
ever, the studies indicate that, even though such
carry-over effects are not rare, migrating further or
wintering in different locations does not necessarily
entail any fitness cost. Such costs may indeed vary
depending on the life-history trait considered, on the
species and on the year studied. Indeed, the cost of a
given migration strategy may be context-dependent,
although all strategies may result in the same long-
term average fitness, enabling the co-existence of
several strategies in the same population.

References listed in Table 3 concern the potential
carry-over effects of the non-breeding distribution or
behaviour on survival and reproduction. However, pre-
vious studies also found that carry-over effects may
work the other way round, and the migration and non-
breeding distribution may depend on the previous re-
productive outcome (Phillips et al. 2017). Such effects
have been observed in kittiwakes (Bogdanova et al.
2011, 2017, Schultner et al. 2014b) and Cory’s shearwa-
ters (Catry et al. 2013, Fayet et al. 2016b). Carry-over
ef fects of reproductive outcome on subsequent migra-
tory behavior can differ among males and females
(Bogdanova et al. 2011, Catry et al. 2013, Schultner et
al. 2014b) and may likely also vary among colonies or
years. Accordingly, raising a chick successfully may
thus not always affect the subsequent migration and
non-breeding distribution (Bogdanova et al. 2017).

4.  CONSEQUENCES OF MIGRATION
 STRATEGIES FOR CONTAMINANT BURDENS

Exposure to and impacts of contaminants has been
recognized as a health concern for wildlife for several
decades (e.g. Letcher et al. 2010, AMAP 2018, Dietz
et al. 2019). Seabirds are near the apex of most mar-
ine food chains and may accumulate high concentra-
tions of contaminants through biomagnification (Bust -
nes et al. 2003, Leat et al. 2011). Such high levels of
contaminants may affect breeding and survival of
individuals and ultimately the dynamics of the popu-
lation in some species (e.g. Erikstad et al. 2013). Sea-
birds are mainly exposed to contaminants through
their food, and contaminant levels are thus varying
according to diet and location (e.g. Leat et al. 2019).

Concentrations of contaminants can be highly vari-
able within or between populations, and a large sam-
ple size of tracked birds may be required to detect
differences among seabirds wintering in different
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areas. Although not specifically designed for con-
taminant studies, SEATRACK offers a suitable plat-
form with which to study the origin of contaminants
in collaboration with other programmes, e.g. ARC-
TOX (https://arctox.cnrs.fr/en/home/) that addresses
mercury (Hg) contamination in Arctic marine food
webs using seabirds as bio-indicators. The contribu-
tion from Albert et al. (2021b in this Theme Section)
stems from this collaboration. Hg is a highly toxic
pollutant for humans and wildlife, causing severe
health impairments, even at low concentrations (e.g.
Dietz et al. 2019). Although naturally occurring in the
environment, anthropogenic activities have increased

Hg concentrations since the industrial revolution
(UNEP 2019). Among marine apex predators, seabirds
show some of the highest Hg concentrations (Atwell
et al. 1998), with reported deleterious effects on
behaviour, physiology and reproduction (e.g. Tartu
et al. 2015). Understanding the relationship between
seabird distribution and Hg contamination is there-
fore important for the conservation of these species.

By analyzing Hg concentrations in blood and feath-
ers and combining these results with data on bird
movement and wintering areas, Fort et al. (2014)
found that little auks breeding in Greenland were
~3.5 times more contaminated in the non-breeding
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Species                                                    Country                                                               Life-history trait                                                                
                                                                                                                                                                                                                                         

Link between survival and winter environmental conditions
Atlantic puffin                                     Norway, UK                                                                  Survival                                                                       
Black-legged kittiwake                          Norway                                                                      Survival                                                                       
Brünnich’s guillemot                               Norway                                                                      Survival                                                                       
Common eider                                 Canada, Norway                                                              Survival                                                                       
Common guillemot                                     UK                                                                          Survival                                                                       
                                                                     UK                                                               Survival, recruitment                                                            
Common tern                                         Germany                                                          Survival, recruitment                                                            
Cory’s shearwater                                     Spain                                                                        Survival                                                                        
                                                                Portugal                                                                     Survival                                                                       
European storm petrel                       Spain, France                                                                 Survival                                                                       
                                                                                                                                                                                                                                        
                                                                                                                                                                                                                                         
Sabine’s gull                                            Canada                                                                      Survival                                                                       

Variation in survival as a function of the migration strategy
Atlantic puffin                                             UK                                                                          Survival                                                                       
                                                             Norway, UK                                                                  Survival                                                                       
Common guillemot                                     UK                                                                          Survival                                                                       
Little auk                                                 Norway                                                                      Survival                                                                       
Northern gannet                                     Canada                                                                      Survival                                                                       
                                                                     UK                                                                          Survival                                                                       

Variation in breeding parameters as a function of winter strategy
Atlantic puffin                                             UK                                                Breeding phenology, breeding success                                             
                                                      Iceland, UK, Norway                                                  Breeding successd                                                               
                                                                     UK                                                Breeding phenology, breeding success                                             
Black-legged kittiwake               UK, Iceland, Norway                                                   Breeding success                                                                
Cory’s shearwater                                  Portugal                                                              Breeding success                                                                
Great cormorant                                    Denmark                  Timing of arrival, fledging production, lifetime reproductive success                    
Little auk                                                 Norway                                            Breeding phenology, breeding success                                             
Manx shearwater                                        UK                                   Breeding phenology, breeding success, egg/chick size                                 
Northern gannet                                     Canada                                           Breeding phenologye, breeding success                                             

aBased on geolocator data from another study; bComparison among years (changes in winter distribution associated with 
changes in mean survival); cTest of the prediction that similar winter distribution should lead to synchronous survival inter-
annual fluctuations; dAverage productivity at the colony level; eTiming of arrival at the colony (not breeding phenology per se)

Table 3. Importance of the non-breeding season in driving North Atlantic seabird demography, based on studies focusing
specifically on seabird non-breeding distribution (for detailed study results see Table S2 in the Supplement). NAO: North At-
lantic Oscillation, GLS: Global Location Sensor, PTT: Platform Transmitter Terminal, SST: sea surface temperature, SOI: South-
ern Oscillation Index, ENSO: El Niño Southern Oscillation, CORT: corticosterone. Parameter effects are indicated in brackets:
(+) significantly positive, (−) significantly negative, (ns) non-significant. (s): compared groups differed significantly. Several 

signs together represent the effects observed in different populations or on different life-history traits

(continued on next page)
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period than in the breeding period, and that Hg ac -
cumulated during the winter period was negatively
related to egg size the following breeding season.
This is one of few studies investigating effects of con-
tamination on breeding parameters in relation to
non-breeding distribution. The pattern with winter
Hg concentrations remaining consistently higher
than in summer has been confirmed by other studies
and for other migrating alcid species (Fort et al. 2016,
Renedo et al. 2020, Albert et al. 2021a).

Fort et al. (2016) examined inter-annual changes in
mercury (Hg) contamination in little auks and their
zooplankton prey in East Greenland and found an
increasing trend in summer contamination (3.4% per
year over the 8 yr period, 2006−2014), whereas the
winter exposure to Hg decreased over the same
period. Renedo et al. (2020) investigated Hg concen-

trations in little auks from 5 Atlantic Arctic breeding
colonies and found a consistent latitudinal pattern
with birds from northern Arctic regions (northern
Barents Sea) exposed to lower Hg concentrations
compared to those from more southern regions
(Labrador Sea).

In a study based on 5 species of seabirds from 17
breeding colonies distributed from Iceland to Russia,
Albert et al. (2021b) found that individuals with high
fidelity to a wintering ground had more similar Hg
concentrations between years than individuals with
low fidelity, suggesting an effect of their migratory
strategy on Hg contamination. These results confirm
the spatial differences in Hg concentration through-
out the North Atlantic Arctic with an east to west
increase in Hg concentrations (Provencher et al.
2014, AMAP 2018, Albert et al. 2019).
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                                                            Parameters tested                                           Method to assess non-breeding                 Reference
                                                                                                                                             distribution or activity

                                            Extratropical cyclones (+/−), NAO (−)                                                  GLS                              Reiertsen et al. (2021)
                                                           Prey availability (+)                                                         GLS and PTT                       Reiertsen et al. (2014)
                                            Subpolar gyre (+), NAO (+), SST (ns)                                                 GLSa                                 Fluhr et al. (2017)
                                                      Extratropical cyclones (−)                                                       GLS, PTT                            Guéry et al. (2019)
                                                            NAO (−), SST (ns)                                                        Band recoveries                       Votier et al. (2005)
                                                                     SST (−)                                                                 Band recoveries                       Votier et al. (2008)
                     Primary productivity (+), NAO (ns), SOI (ns), fish abundance (ns)        GLSa and band recoveries          Szostek & Becker (2015)
                                              SOI (−), NAO (ns), hurricanes (ns)                                                    GLSa                              Genovart et al. (2013)
                                                              SOI (−), SST (−)                                                                    GLS                                 Ramos et al. (2012)
                                  Western Mediterranean Oscillation Index (−/ns),                          Band recoveries and                 Matović et al. (2017)
                                    St. Helena index (−/ns), ENSO (−/ns), SOI (ns),                                   resightings
                                          Multivariate Enso Index (ns), NAO (ns)
                       Tropical-Northern hemisphere pattern (−), NAO (ns), SOI (ns)                             GLS                                   Fife et al. (2018)

                                                       Winter distributionb (ns)                                                             GLS                                 Harris et al. (2013)
                                                               Synchronyc (s)                                                                                                          Reiertsen et al. (2021)
                                                               Synchronyc (s)                                                                                                           Reynolds et al. (2011)
                                                              Synchronyc (ns)                                                                    GLS                              Descamps et al. (2021)
                                    Activity as a function of migration strategy (ns)                                          GLS                               Pelletier et al. (2020)
                                 Sex effect (on winter distribution and survival) (s)                                       GLS                                Deakin et al. (2019)

                                                      Winter distribution (s/ns)                                                            GLS                                 Fayet et al. (2016a)
                                     Migration distance (−), wintering latitude (−)                                           GLS                                 Fayet et al. (2017a)
                  Similarity in partner migration route (−/+), winter foraging effort (−)                        GLS                                Fayet et al. (2017b)
                                                 Non-breeding distribution (ns)                                                       GLS                             Bogdanova et al. (2017)
                                                  CORT (in winter feathers) (+)                                                        GLS                                 Pérez et al. (2016)
                                                      Migration distance (−/ns)                                                 Band resightings                  Bregnballe et al. (2006)
                                                        Migration distance (ns)                                                              GLS                                Dufour et al. (2021)
                                            Winter activity / migration timing (s)                                                  GLS                                Fayet et al. (2016b)
                                  Activity (as a function of migration strategy) (ns)                                        GLS                               Pelletier et al. (2020)

Table 3 (continued)
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5.  SEABIRD NON-BREEDING DISTRIBUTION
AND MARINE SPATIAL PLANNING

5.1.  Seabirds in marine spatial planning

Seabird populations are impacted by a multitude of
anthropogenic stressors operating in various envi-
ronments and at different scales (Dias et al. 2019).
Predation by invasive and alien species and anthro-
pogenic activities like hunting and trapping are
widespread threats that mainly operate in the breed-
ing colonies. Other important threats operate at sea,
including extreme weather events (e.g. Reiertsen et
al. 2021), by-catch in fisheries (Anderson et al. 2011,
Žydelis et al. 2013, Bærum et al. 2019), direct compe-
tition with fisheries (Grémillet et al. 2018), chronic
and accidental oil pollution (Dunnet 1982, Votier et
al. 2005, Camphuysen 2010), habitat loss due to ex -
panding marine industries and collision risk with off-
shore wind farms (Furness et al. 2013). Improving the
conservation status of seabirds would therefore re -
quire several targeted management measures, oper-
ating at different scales and involving different eco-
nomic sectors and different levels of governance
(Dias et al. 2019).

For example, while the ultimate causes of food
shortages related to climate change and overfishing
need to be solved by institutions at the national or
international level, spatially explicit marine stressors
are often addressed by ecosystem-based marine spa-
tial planning (MSP). MSP is a public process in which
human activities are balanced and planned to achieve
environmental, social and economic sustainability
(Douvere 2008). Because MSP provides a framework
for explicitly managing multiple human activities
(White et al. 2012), it has been instrumental for
implementing ecosystem-based management. Impor-
tantly, by balancing human activities and the need
for protection of ecologically and biologically sensi-
tive areas, MSP can foster improved ocean health
and reduce the risk of unsustainable cumulative
anthropogenic impacts on the marine environment
(Douvere 2008, Collie et al. 2013).

Seabirds are sensitive to a range of spatially re -
stricted marine human activities and, combined with
poor conservation status, are thus highly relevant
ecosystem components to consider in the MSP pro-
cess. Moreover, as highly mobile and migratory mar-
ine top-predators, seabirds often congregate in areas
of high biological productivity and diversity (e.g.
Bost et al. 2009, Fauchald 2009), suggesting that their
distribution could reflect important ecosystem prop-
erties (Sydeman et al. 2007). It has therefore been

argued that seabirds and other marine top predators
can serve as proxies for identifying areas of ecologi-
cal significance (Block et al. 2011, Reisinger et al.
2018, Hindell et al. 2020), as well as priority sites for
marine conservation (Lascelles et al. 2012).

5.2.  Using tracking data to identify important
biodiversity areas

Prioritizing marine areas for seabird conservation
requires knowledge of at-sea distribution, habitat
use and provenance (Dunnet 1982). Tracking data
using GPS, PTT (Platform Transmitter Terminal) and
light-level geolocators deployed on individual birds
may resolve these issues and have accordingly be -
come increasingly important sources of information
in conservation and marine spatial planning (Las-
celles et al. 2012, Harrison et al. 2018, Hays et al.
2019). Recently, seabird tracking data have been
used in several studies to identify important bird and
biodiversity areas (IBAs; Delord et al. 2014, Lascelles
et al. 2016, Dias et al. 2017, Augé et al. 2018, Heerah
et al. 2019, Requena et al. 2020, Davies et al. 2021).
One marine IBA criterion, as defined by Birdlife
International, is an area holding more than 1% of the
global population of a congregatory seabird species
(Lascelles et al. 2016). This straightforward definition
is especially useful when identifying important at-
sea areas for pelagic species breeding at a restricted
number of breeding sites. To identify IBAs under this
criterion from tracking data, Lascelles et al. (2016)
suggested a method based on estimation of kernel
densities. In short, kernel utility distribution (UD) is
estimated for each individual track, and the 50% UD
area is defined as the individual’s ‘core area’. The
frequency of use is simply calculated by counting the
number of overlapping core areas. Finally, to account
for population size, the frequency of use is multiplied
by the size of the breeding population. Lascelles et
al. (2016) suggested a simple test to address the rep-
resentativeness of the sample for a wider population,
and a standardized approach to choose the smooth-
ing parameter for the kernel estimation.

Marine IBAs are, among other factors, used as
input to identify ecologically or biologically signifi-
cant marine areas (EBSAs). An EBSA is defined by 7
scientific criteria adopted by the Convention on Bio-
logical Diversity (CBD). While designation as an
EBSA does not result in any formal legislative power
that can be applied within the area, they are used by
governmental bodies to inform MSP and to prioritize
candidate areas for marine protected areas (MPAs;
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Dunn et al. 2014). Since the concept of EBSAs was
embraced by the CBD in 2010, EBSAs have been
established around the world according to a formal-
ized process (Johnson et al. 2018). Marine birds are
mentioned in 63% of the EBSA descriptions (Johnson
et al. 2018), and more than 600 marine IBAs, mostly
identified using tracking data, are included in EBSAs
(Hays et al. 2019).

5.3.  Estimating seabird habitats with species
distribution models

While the use of kernel densities is useful in the
quantification of the distribution of seabirds from a
given breeding site, species distribution models
(SDMs) represent a more general framework for esti-
mating habitat use (Guisan & Thuiller 2005, Elith &
Leathwick 2009). SDMs are empirical models that
relate occurrence data (e.g. tracking data) to envi-
ronmental predictors (Guisan & Zimmermann 2000).
The relationship between the occurrences and the
environment is estimated by various statistical meth-
ods, reflecting the species’ environmental niche. If
the niche is constant across space, the estimated rela-
tionship can be used to predict the spatial distribu-
tion of the species in areas where the environmental
variables are known (Guisan & Thuiller 2005, Elith &
Leathwick 2009). Accordingly, SDMs could be used
to predict the distribution of seabirds from colonies
not covered by tracking data, and could therefore be
used to predict the regional distribution of the spe-
cies (Wakefield et al. 2017, Hindell et al. 2020,
Fauchald et al. 2021 in this Theme Section).

There are, however, several methodological and
partly unresolved issues related to SDMs of tracking
data (Aarts et al. 2008, Wakefield et al. 2017, Fau ch -
ald et al. 2021). First, to apply SDMs to presence-only
data, the presences need to be modeled against the
habitat ‘available’. This can be approached in several
ways. Wakefield et al. (2011) generated a null-model,
in which the probability of locations being used (i.e.
available habitat) declines with distance from the
breeding colony (see also Aarts et al. 2008). Alterna-
tively, Raymond et al. (2015), Reisinger et al. (2018),
Péron et al. (2018) and Hindell et al. (2020) simulated
random walks from the tagging location (e.g. the
colony) to generate null models. Clearly, these meth-
ods could be useful in periods when the birds are
strongly constrained by the location of the breeding
colony. However, during the non-breeding period,
when the birds are free to roam over larger areas (see
Amélineau et al. 2021, Merkel et al. 2021b), the

available habitat needs to be defined less strictly
(Fauchald et al. 2021). Accordingly, Fauchald et al.
(2021) defined the available habitat as an area that
included all recorded occurrences of the species in
the dataset and included distance to colony as a co-
variate in the SDMs. The non-breeding habitat uti-
lized by pelagic seabirds in the North Atlantic is
highly complex and colony-specific (Amélineau et al.
2021, Fauchald et al. 2021, Merkel et al. 2021b). In
line with this, Torres et al. (2015) found that colony-
specific SDMs of the grey petrel Procellaria cinerea
in the Southern Ocean performed well for each pop-
ulation but had poor transferability to an out-of-sam-
ple colony, suggesting that the populations had con-
trasting habitat preferences. Thus, the transferability
of SDMs for pelagic seabirds seems to be low, and
any model predicting the distribution of birds from
colonies not covered by tracking data should assess
the transferability of the model, or how well the
model predicts the distribution of birds from other
colonies (Torres et al. 2015, Péron et al. 2018, Fauchald
et al. 2021). A multi-colony design with respect to
tracking data is therefore needed.

A second problem related to SDMs based on track-
ing data are the spatial dependencies or serial auto-
correlation, among positions of the same individual
(Aarts et al. 2008). Spatial dependencies will in crease
the tendency of model overfitting and the detection
of spurious relationships with environmental vari-
ables. Aarts et al. (2008) suggested an alleviation of
this problem by including random terms that allow
individual variability in response to environmental
covariates (i.e. generalized additive mixed models, or
GAMMs; Wood 2017). However, these models are
computationally demanding and often have conver-
gence problems in complex settings (Raymond et al.
2015, Fauchald et al. 2021). To reduce the effect of
overfitting, Fauchald et al. (2021) suggested restrict-
ing the non-linear complexity of the models. It is,
however, more important to test the predictive per-
formance of the model using valid out-of-sample
cross-validation and adequate performance indica-
tors (Fauchald et al. 2021). Moreover, robust meth-
ods, such as cluster bootstraps (Fauchald et al. 2021),
should be used to estimate the uncertainty of the pre-
dicted distribution.

Although a number of statistical modelling tools
exists, spatial modelling of seabird habitat use is
challenging and, as exemplified by Fauchald et al.
(2021), there are several methodological issues that
are vital to address in order to maximize the potential
of tracking technology in marine spatial planning.
Moreover, the complex and population-specific migra-
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tion strategies possessed by North Atlantic seabirds
highlight the importance of spatially explicit multi-
colony studies such as the SEATRACK project when
assessing important seabird areas during the non-
breeding season.

6.  CONCLUSIONS AND PERSPECTIVES

Over the last 20 yr, animal tracking has been rev-
olutionized, providing a wealth of new information
about seabird migration strategies and non-breed-
ing distribution in the North Atlantic. This can
mainly be ascribed to the development of light-level
geolocators that now weigh only 0.5−3.5 g with a
battery life of 0.5−5 yr and are widely used on small
to large seabirds. Extraordinary variation among in -
dividuals, populations and species has been revealed
in core aspects of migration strategies such as dis-
tance travelled, movement patterns, destinations,
spread, mixing and consistency. Such variation in
the migration and non-breeding distribution among
individuals and populations can lead to variation in
vital rates, population dynamics and contamination
by pollutants.

The North Atlantic, and marine ecosystems in gen-
eral, are under pressure from anthropogenic activities
and global climate change, and seabird migration
strategies and distributions are expected to change
accordingly. It is therefore important to map and
understand existing migration strategies to be able to
reveal changes and understand the potential conse-
quences. For this, large-scale tracking, with coordi-
nated deployments in multiple colonies is essential.
Wide collaboration across countries is probably the
most crucial element and prerequisite to be able to
move from a single colony/species approach to a
more holistic approach to understand the non-breed-
ing distribution of seabirds and support their conser-
vation (Bernard et al. 2021).

The SEATRACK project has contributed to a sub-
stantial increase in our knowledge of seabird distri-
bution outside the breeding season in temperate and
arctic zones of the North Atlantic. At the same time,
long-term population monitoring data exist from
many colonies, species and countries. Linking this
information to infer what drives seabird populations
should now be given priority. The increasing avail-
ability of long-term demographic data represents an
invaluable and necessary tool to improve our under-
standing of how the non-breeding environment af -
fects individuals and populations, but important gaps
clearly remain. In particular, very little is known

about the at-sea distribution of immature birds from
fledging to colony recruitment and about their
 survival and breeding probabilities. Studying their
distribution at sea is extremely challenging, but pre-
vious studies in the North Atlantic, some using geo -
locator tags, have shown that it is possible (e.g.
Ramos et al. 2019, Campioni et al. 2020). Further
research should ideally focus on young age classes to
understand how seabird populations are regulated.
Assessing the potential individual variation in the
environment−demography relationship is also a pri-
ority. Such individual variation may depend on many
factors (e.g. sex, age) and may strongly affect the
dynamics of a population in a changing environment
(Vindenes & Langangen 2015). However, whether
environmental effects on individual survival or re -
production are mediated by individual variation in
their at-sea distribution remains virtually unknown.
Data and methods now exist to answer these ques-
tions, and such studies should become a priority.
Likewise, determining the mechanisms (energetics,
physiology) linking distribution and habitat use to
body condition, breeding probability, breeding suc-
cess and survival of individuals should be given pri-
ority, given its importance for understanding popula-
tion dynamics (Crossin et al. 2014).

According to the Ocean Panel (Stuchtey et al.
2020, p. v) the ‘ocean health is more at risk than we
thought, because different pressures add up and
contribute to rapid and unpredictable changes in
ocean ecosystems. […] We need a comprehensive
ap proach to sustainably manage 100 percent of the
ocean’. Sustainable management of the oceans is
necessary to solve our main, global challenges re -
lated to biodiversity, climate change and human
food security (Sala et al. 2021). Marine protection
(e.g. through MPAs) is regarded as an effective tool
for restoring marine biodiversity and ecosystem
services (Worm et al. 2006, Sala & Giakoumi 2018,
Sala et al. 2021). At present less than 3% of the
oceans are highly protected (based on data from the
Marine Conservation Institute: http://mpatlas.org).
Traditionally, site protection is a slow and demand-
ing process, also with respect to necessary identifi-
cation, documentation and delineation. In a rapidly
and unpredictably changing environment where the
valued ecosystem components are relocating fast,
the need for effective indicators is critical. By inform-
ing the necessary processes of sustainable marine
planning and utilization, approaches like SEATRACK
are important tools not only to safeguard healthy
seabird communities, but also improve (global) ocean
health.
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