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FITTING MODELS TO DATA
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FITTING MODELS TO DATA
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ALAMO SOFTWARE

Build a model of output variables z as a function of
input variables X over a specified interval

Process simulation or Experiment

x € ]}Rk z € R™
xt < x < x¥ z=f(x)
Independent variables: Dependent variables:

Operating conditions, inlet flow Efficiency, outlet flow conditions,
properties, unit geometry conversions, heat flow, etc.
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DESIRED MODEL ATTRIBUTES

e ALAMO aims to build models that are

— Accurate
We want to reflect the true nature of the system

— Simple

Interpretable
Tailored for algebraic optimization

— Generated from a minimal data set
Reduce experimental and simulation requirements
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ALAMO

Automated Learning of Algebraic Models using Optimization
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MODEL IDENTIFICATION

* Ildentify the functional form and complexity of the surrogate
models z = f(x)

* Seek models that are combinations of basis functions
1. Simple basis functions

Category Xj(z)

L. Polynomial (za)”

II.  Multinomial H (za)™
deD'CD

ITI. Exponential and logarithmic  exp (%) , log (%d)

2. Radial basis functions for parametric regression
3. User-specified basis functions for tailored regression
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OVERFITTING AND TRUE ERROR

e Step 1: Define a large set of potential basis functions
= Bo + Brx1 + Boxo + Bzwrxo + fae™t + Pse™? +.

* Step 2: Model rm\ I

r) =24+ 19+ He"

* See Zach Wilson’s presentations for MILP/MINLP techniques

— Monday 5-5:25% Tuesday 2-2:15
Ideal Model

< True error

Empirical error

! CompIeX|ty

<
Underfitting ' Overflttmg
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ALAMO

Automated Learning of Algebraic Models using Optimization
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ERROR MAXIMIZATION SAMPLING

e Search the problem space for areas of model inconsistency
or model mismatch

* Find points that maximize the model error with respect to
the independent variables

Surrogate model

. (z(a:) - z(g;)>2

— Optimized using derivative-free solver SNOBFIT (Huyer and
Neumaier, 2008)

— SNOBFIT outperforms most derivative-free solvers (Rios and
Sahinidis, 2013)
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KEY INGREDIENT: OPTIMIZATION

New
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model
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model
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e Surrogate model identification
— Simple, accurate model identification
— Integer optimization
e Error maximization sampling
— More information found per simulated data point

— Derivative-free optimization
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ALAMO PROVIDES SIMPLE MODELS

Modeling type, Median more complexity than required

ALAMO modeler, 0 | E
The lasso, 4 — P
Ordinary regression, 9 | .
10 0 10 20 30 40

terms in model of terms

Number of ] B [ True number }

Results over a test set of 45 known functions treated as black
boxes with bases that are available to all modeling methods
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CONSTRAINED REGRESSION
0 < [A], < [A]max
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BATCH REACTOR

Batch reactor problem:
First-order reactions in series

— T
\ /
k,=0.473 ky=1.44
A= B C
\ /

Find a model for the
concentration of B such that

0 < [B](t) < [Ao

where [A]p =1, [B]p = 0, and [C]yp = 0.

Problem selected from constrained regression test library
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BATCH REACTOR MODELS

Safe extrapolation

Constrained

Unconstrained
|B]
0.25 0< [B] < [4]o 0< [B] < [A]o
t € [0.6,10] t € ]0.5,11]
i
!
[
I
[ | !
0 ; | ‘7\ s::w mesa
0.6 10 t et s
[B](t) = —0.181og t + 0.89/v/t [B](t) =3.3-10 % expt + 0.46v/%
—0.28¢ + 0.018% — 5.2. 107> ¢*

[B](t) = 0.34log t + 2.3/
—-0.91/t> +0.32/t* — 1.5

RMSE Test error
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0.05 1

0.00 -

Carnegie Mellon University

—0.71/t + 0.0040 * — 0.00020 t3

16



TYPES OF RESTRICTIONS
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pressure, temperature,
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monotonicity, numerical
properties, convexity
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safe extrapolation,
boundary conditions

Constrained regression relies on global optimization technology (BARON)
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IMPLEMENTATION
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mu = sum ( z(:, k), S(:) ) / count( S(:) )
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CONCLUSIONS

e ALAMO provides algebraic models that are
v Accurate

v’ Simple
v' Generated from a minimal number of data points

e ALAMO'’s constrained regression facility allows modeling of
v' Bounds on response variables
v Convexity/monotonicity of response variables

e Built on top of state-of-the-art optimization solvers

 ALAMO site: archimedes.cheme.cmu.edu/?qg=alamo

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
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