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LEARNING PROBLEM

* Build a model of output variables 7 as a function of input
variables x over a specified interval

Process simulation
(33‘1\ (21\
Hip) <2
xr € RD |:> :> 2 € RE
ot <<zt |2 — 2|z = f(z)
\p/ ) \x)
Independent variables: Dependent variables:
Operating conditions, inlet flow Efficiency, outlet flow conditions,
properties, unit geometry conversions, heat flow, etc.
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OUTLINE

* Polynomial chaos expansion
— Best subset selection method

— Application in risk assessment

 ALAMO: Automatic Learning of Algebraic Models
for Optimization
— Best subset selection method
— Adaptive sampling
— Comparisons with least squares and the lasso
— Application in optimization

Carnegie Mellon University 3 ]



POLYNOMIAL CHAOS EXPANSION

e Build polynomial surrogate models of a given simulator

Input x
—1  Simulator

Output z

Polynomial chaos expansion:

z:m)_%%+z%
=1

M j ok
ZZZ QB3 (X j, Xp, Xp) + ..
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z=p(x)

M
;; kB2(Xj:xk)  Key steps:

* Choose basis functions B
e Determine coefficients a



OVERVIEW OF PCE METHODS

e Intrusive PCE methods (Xiu and Karniadakis, 2003)
— Substitute PCE’s into partial differential equations
— Solve new equations for coefficients

* Nonintrusive PCE methods (Webster et al., 1996, Isukapalli et al., 1998,
Ghiocel and Ghanem, 2002, Li and Zhang, 2007, Eldred and Burkardt, 2009,
Blatman and Sudret, 2010, Oladyshkin et al., 2011)

— No manipulation of partial differential equations
— Estimate coefficients by projection

— Estimate coefficients by fitting curves
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PROPOSED PCE ALGORITHM

Sample 1+ f(z1,72)




PROPOSED PCE ALGORITHM

Sample o 1+ f(z1,72)

o 1
T : ° o _T°
Initialization with a constant o o

- 1

—t—t—t— HO+—+—

L1, L2
Z = constant
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PROPOSED PCE ALGORITHM

Sample o 1+ f(z1,72)
———— QiQf _Qc. :
Initialization with a constant : o) : 0
© 1 &
Yes T L1,I2
Error small? @ T
Z = constant
—_ 2
Error = ( Ssurrogate — <simulation )
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PROPOSED PCE ALGORITHM

Sample

A4

Initialization with a constant

e o
4%} Best subset selected by@

No
Z = Qo+ QT2

Add higher-order terms to current PCE:

y

Add basis terms

Solve a mixed-integer
problem for a best subset
of basis functions
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PROPOSED PCE ALGORITHM

Sample

I Ideal model

Initialization with a constant :

>
@ Underfitting I _Overfitting
= d
< |
No |
y 1 _______________________________________

Add basis terms

oy S O
Solve a mixed-integer validation Q

problem for a best subset

of basis functions >
Terms T

y

Yes
Overfitting?
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PROPOSED PCE ALGORITHM

Sample

A4

Initialization with a constant

No

y

Add basis terms

Solve a mixed-integer
problem for a best subset
of basis functions

Overfitting?

Yes Novelty of proposed method:
Error small? @ _ . _
orsmd - Math programming for basis selection

* Global optimal subset

e Obtains more accurate models
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TESTING ON A BENCHMARK PROBLEM

* CO, injection into a deep saline aquifer
 Simulated using TOUGH2

mass/pressure/gas saturation = f (porosity, permeability, injection rate)

Upper Shale Cap (impermeable)

30m 986 gridblocks
986 surrogate models for each output
Shale layers T
<
o
o
20
£ 5
<t o r—
s gz 8
@ t Gridblock i
2 >
o
30m Pressure, gas saturation @ reservoir
® _ o Horizontal
2 m Horizontal injection well

Lower Shale (impermeable)

»
|

A

6000 m
ECO2N manual, 2005
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POLYNOMIAL SURROGATE MODEL

Q2=0.98
4th order polynomial |
expansion

Mass of CO,, in caprock after 30 days of injection (kg)

i Normalized permeability
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COMPARISON AGAINST TOUGH2

For every gridblock i, i=1,..., 986

COs saturation in brine = f; (porosity, permeability, injection rate)

Mean value of gas saturation contour map obtained with TOUGH2 Mean value of gas saturation contour map obtained with PCE models
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MONTE CARLO SIMULATION

Cumulative probability distribution obtained with 4000 simulations of surrogate models

Empirical CDF
o o
B oo

0.3r
0.2f

0.1F

== §urrogat¢ model [

0 1 2 3 4 5 6 -
Maximum caprock pressure after 30 days of injection (Pa) | 10’

= » 1 1
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REDUCED-ORDER MODELING GAINS

* For the benchmark study and SACROC application, surrogate
models developed based on the proposed technique were
found to be accurate.

. CPU time to CPU time to
Maximum

Case run surrogates run numerical Speedup
in MATLAB simulator

relative error

SACROC
Oilfield Case

7% 45 s 24 hrs 100 x

See Zhang and Sahinidis (IECR, 2013)
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SIMULATION OPTIMIZATION

Pulverized coal plant Aspen Plus® simulation provided by the National Energy Technology Laboratory
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PROCESS DISAGGREGATION

Model
generation

Block 1:
Simulator

~ ™)
Pt e T min  f(z)
| ___! : < :
N TTEss: : Block 2: Model st g(z) <0
! E —m i i Simulator generation h(:c —
1 | 1 <+ |
¢ ] L ! x € [zt
\ J \ )
Block 3: Model
Simulator generation
Process Simulation Surrogate Models Optimization Model
Disaggregate process into Build simple and accurate Add algebraic constraints
process blocks models with a functional design specs, heat/mass
form tailored for an balances, and logic
optimization framework constraints
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RECENT WORK IN CHEMICAL ENG

Simulator Modeler Optimizer

"

Kriging Neural nets Polynomial-based

Palmer and Realff,
2002

Huang et al., 2006
= Davis and
lerapetritou, 2012

Full process

= Palmer and Re
2002

- Caballerﬁaﬂd : ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ;;;;;
Grossmann, 2008
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )
|
( )
Initial sampling
\. J
y
( . )
,| Build surrogate
\ model )
Update Adaptive
training data samplin
set \ pling /
false

\ Black-box function
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )
|
( )
Initial sampling
k ) /
y
( . )
,| Build surrogate
\ model )
Update Adaptive
training data .
st | sampling | ‘
false

\ Training data
Black-box function
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )
|
( )
Initial sampling
k J /
v
( . )
,| Build surrogate
L model )
Update Adaptive
training data samplin
set \ g
false

Current model
\ Training data
Black-box function
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )
|
( )
Initial sampling
k J /
y
( . )
,| Build surrogate
. model ) [- -
Update [ Adaptive
training data i Model
et | sampling | error

A

false

Current model
\ Training data
Black-box function
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )
|
( )
Initial sampling
k J /
y
( . )
,| Build surrogate
\ model )
LIPElE Adaptive
training data samplin
set \ b1INg

A

’ \/ ‘
\ Training data
Black-box function

Carnegie Mellon University 24 ]

false




ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )
|
( )
Initial sampling
k J /
v
( . )
,| Build surrogate
L model )
Update Adaptive
training data samplin
set \ pling /

A

false

New model
\ Training data
Black-box function
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MODEL IDENTIFICATION

* Goal: Identify the functional form and complexity of the
surrogate models
z = f(z)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X,(z)

I. Polynomial (zq)"

II.  Multinomial H (za)™
deD'CD

III. Exponential and loga- exp (“fy—d) , log (%ﬂf)
rithmic forms

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.
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BEST SUBSET SELECTION

Step 1: Define a large set of potential basis functions

) T T . .
2(x) = Bo + Brix1 + Baxa + Paxi22 +ﬁ4$—1 +ﬁ5$—2 + Bge® + Bre® + ...
2 1
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BEST SUBSET SELECTION

Step 1: Define a Iarge set of potential basis functions

—- -
f—\ - -\

2(x) —\50 W12y +(52$2‘+ B3xi1xo + 54— +'55 ;‘Jr Bee™? #,B?ex?' .-
) S

Step 2: Model reduction .‘ [
2(x) = Bo + B:zmz + 55— + [re®?
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BEST SUBSET SELECTION

Step 1: Define a Iarge set of potential basis functions s

’—\ ¢—~\

2(z) A =/ 50 W12y +(52$2‘+ Bsxixs + 54— +'55 ;‘Jr Bee™ #ﬁ?e
~--,’ 2 S

L
I} .
v, .*
o, . os®
., . .

Step 2: Model reduction ., [
2(x) = Bo + 52$2 + 55— + [re™?

'.
']
.....
gy
Ty

To identify a simple functional form we
need to solve two problems:

1. Model Sizing
2. Basis function selection
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MODEL SIZING

Solve for the
best one-term
A model
Goodness-of-fit
measure

Complexity or terms allowed in the model
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MODEL SIZING

A

Goodness-of-fit
measure

Some measure of
error that is
sensitive to

overfitting
(AlCc)

Complexity or terms allowed in the model
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MODEL SIZING

4 Solve for the
Goodness-of-fit best two-term
measure @ model

Complexity or terms allowed in the model
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MODEL SIZING

A

Goodness-of-fit

th
measure 6" term was not worth the

\ added complexity

\ \ Final model: 5 terms long

.
NS

Complexity or terms allowed in the model
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ALAMO

Automated Learning of Algebraic Models for Optimization

( Start )
|
( )
Initial sampling
k J /
y
( . )
,| Build surrogate
. model ) [- -
Update [ Adaptive
training data i Model
et | sampling | error

A

false

Current model
\ Training data
Black-box function
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ERROR MAXIMIZATION SAMPLING

e New goal: Search the problem space for areas of model
inconsistency or model mismatch

 More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Surrogate model

— Optimized using a black-box or derivative-free solver (SNOBFIT)
[Huyer and Neumaier, 08]

— Derivative-free solvers work well in low-dimensional spaces
[Rios and Sahinidis, 12]
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SYNOPSIS

Model i Sample Points Model i+1

New surrogate
model

Surrogate
model

Blackbox = VYoo New sample
function point

&,
o) - : .
" Maximizatio® "?ebund mode\
Derivative-free Mixed-integer
optimization programming
in low for best simple
dimensions model

See paper 589b (Th 8:50 am)
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COMPUTATIONAL TESTING

 Paper 589b: Test the accuracy, efficiency, and model
simplicity

* Modeling methods compared
— MIP - Proposed methodology
— LASSO — The lasso regularization
— OLR - Ordinary least-squares regression

e Sampling methods compared
— EMS - Proposed error maximization technique
— SLH - Single Latin hypercube (no feedback)
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MODEL SIZING RESULTS

Number of terms in Number of terms in
the surrogate model the true function
Our method The LASSO Least squares
80 80 80
ol T 7 =—0.84 0. 7=43 0. z = 10.
R 60 7=11 60- 7=49 60- 7o
g 50+ 501 50
S 401 \ 40 40
08; 30 30 30
T 20 20- 20-
10- 10 10-
e — ol LIS 0 /WAF m— -
6 0 6 12 18 24 30 36 6 0 6 12 18 24 30 36 6 0 6 12 18 24 30 36
Tsurrogate - Ttrue Tsurrogate - Ttrue Tsurrogate - Ttrue

45 problems with 2-10 available bases, 5 repeats
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SUPERSTRUCTURE OPTIMIZATION

e

d3

Lleaned gas & TI
= al | NER
fj Solid sorbent |
. stream 4_ %]4
Solid sorbent CO, .= @ E \
captu re _.AS
= a3 é:i (fI‘

I Other | - — ‘ ?‘
| l > ”
capture L= a4 = d4
I t_ralni i < 5 @ D
—/ > —> Cooling water
Flue gas from‘/_T 1 — Steam ’

power plant N

—> \Work




CONCLUSIONS

e Best subset methods provide models that are
v Accurate representations of black-box models

e ALAMO provides algebraic models that are
v" Generated from a minimal number of function evaluations
v’ Tractable in an optimization framework (low-complexity models)

e Surrogate models can then be incorporated within an
optimization or risk assessment framework

e Learning algorithms are domain independent

e ALAMO site: archimedes.cheme.cmu.edu/?q=alamo
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RESULTS

Modeling efficiency

Model accuracy

Fraction of problems solved
f=]
o

— MIP/DFO
--- MIP/SLH

— LASSO/DFO

--- LASSO/SLH
— OLR/DFO
--- OLR/SLH

0-0 T T T
0 0.002 0.004 0.006

0.008

Normalized test error

Modeling methods

0.01

e o e
ES (=)} =]

Fraction of problems solved

o
o

0.0

— MIP/DFO
— LASSO/DFO
— OLR/DFO

0 10

20

30 40

Function evaluations used in training set

Sampling methods

Our

Least

squares

Error
maximization

Single Latin
hypercube

45 test problems, repeated 5 times, tested against 1000 independent data points
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80% of the
runs yielded
<0.1% error

Fraction of problems solved

RESULTS

Model accuracy

— MIP/DFO
--- MIP/SLH

— LASSO/DFO

--- LASSO/SLH
— OLR/DFO
--- OLR/SLH

0 0.002 0.004 0.006

0.008

Normalized test error

Least
squares

0.01

Fraction of problems solved

o
o

e
o0

o
o

o
'S

0.0

Modeling efficiency

— MIP/DFO
— LASSO/DFO
— OLR/DFO

10

20

30 40

Function evaluations used in training set

maximization

Single Latin
hypercube

Our

45 test problems, repeated 5 times, tested against 1000 independent data points
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RESULTS

Modeling efficiency

Model accuracy

g
o

Fraction of problems solved
<
=

e
b
I

0.0

— MIP/DFO
--- MIP/SLH

— LASSO/DFO

--- LASSO/SLH
— OLR/DFO
--- OLR/SLH

0 0.002

0.004 0.006

0.008

Normalized test error

Our
method

LASSO

Least
squares

0.01

e o e
ES (=)} =]

Fraction of problems solved
=
o

0.0

70% of the runs
only required
<10 simulations

to build
— — MIP/DFO
— LASSO/DFO
— — OLR/DFO
10 20 30 40

Function evaluations used in training set

ng methods

Error

maximization

Single Latin
hypercube

45 test problems, repeated 5 times, tested against 1000 independent data points
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