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Carbon Capture Challenge

 The traditional pathway from discovery to S Pesesn
commercialization of energy technologies ~1kWe
can be quite long, i.e., ~ 2-3 decades

« President’s plan requires that barriers to the Smal pit

widespread, safe, and cost-effective
deployment of CCS be overcome within 10

years Medium pilot
1-5MWe

« To help realize the President’s objectives,
new approaches are needed for taking Semi-works pilot
carbon capture concepts from lab to power 20-35 MWe
plant, quickly, and at low cost and risk

e CCSlwill accelerate the development of Fi&“fg&"&ﬂg'
carbon capture technology, from discovery e
through deployment, with the help of
science-based simulations

Deployment, >500
MWe, >300 plants
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Carbon Capture Simulation Initiative
www.acceleratecarboncapture.org

Identify Reduce the time Quantify the technical Stabilize the cost
promising for design & ‘ risk, to enable reaching ‘ during commercial
concepts troubleshooting larger scales, earlier deployment
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PROCESS DISAGGREGATION

Process Simulation

Disaggregate process into
process blocks

Carnegie Mellon University

Block 1: Model
Simulator generation
Block 2: Model
Simulator generation
Block 3: Model
Simulator generation

Surrogate Models

Build simple and accurate
models with a functional
form tailored for an
optimization framework

r N
min f(z
s.t. g(x) =0
h(x) =0
z € [z!, 2Y]
\ J

Optimization Model

Add algebraic constraints
h(x)=0: design specs,
heat/mass balances, and

logic constraints




MODELING PROBLEM STATEMENT

* Build a model of output variables z as a function of input
variables X over a specified interval

Process simulation
M 2

r € RP : : 2 e RE
o<z <ag® |z |:> — |:> |z = f(x)
\zp/ ‘ \2xc/

Independent variables: Dependent variables:
Operating conditions, inlet flow Efficiency, outlet flow conditions,
properties, unit geometry conversions, heat flow, etc.
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ALGORITHMIC FLOWSHEET

( Stia\rt )

Initial sampling

A
Build surrogate
model

A

Adaptive sampling

A
Model
converged?

Update training
data set

false

(_stop )
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DESIGN OF EXPERIMENTS

 Goal: To generate an initial set of input variables to evenly

sample the problem space /wi\
T
v=(z' 2? ! V) o=
d

=y

e Latin hypercube design of experiments [McKay et al., 79]
T2, 5 T2, 5 T2,
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INITIAL SAMPLING

e After running the design of experiments, we will evaluate
the black-box function to determine each 7!

x:(a’;]‘ a’/’2 “ .. x?’ . .. xN)

Process simulation

Initial
— = training
set
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MODEL IDENTIFICATION

* Goal: Identify the functional form and complexity of the
surrogate models 2 = f(z)

* Functional form:

— General functional form is unknown: Our method will identify
models with combinations of simple basis functions

Category X;(z)

I. Polynomial (CCd)a

II. Multinomial H (xd)ad
deD'CD

ITI. Exponential and loga-  exp (m_y—d) , log (%)
rithmic forms

IV. Expected bases From experience, simple inspec-
tion, physical phenomena, etc.
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BEST SUBSET METHOD

e Surrogate subset model:

2a) = 3 B X ()

JES

e Mixed-integer surrogate subset model:

2a) = (y;8)) Xj(w) suchthat y;=1 je€s
e y; =0 j¢S8

 Generalized best subset problem mixed-integer formulation:
min (5, y)

B,y

Carnegie Mellon University



FINAL BEST SUBSET MODEL

min SE = Z
Yoy =T

jeB

Zj Z/Bg ij

JjEB

N
U(l—y;) SZ j(2’25g ) Ul —y;) jeB

jeB
5?Jj§5j55uj jeB
ij{O,l} ]EB
Bj € (85, B jEB

 This model is solved for increasing values of T until the AICc
worsens
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ADAPTIVE SAMPLING

e Goal: Choose new locations to sample that can best be used
to improve the model

e Solution: Search the problem space for areas of model
inconsistency or model mismatch

Model i Sample Points Model i+1

New
surrogate
model

Surrogate

Black-box
function

<,

” W
Of
Maximizato® Re uild moade
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ADAPTIVE SAMPLING

e Goal: Search the problem space for areas of model
inconsistency or model mismatch

e More succinctly, we are trying to find points that maximizes
the model error with respect to the independent variables

Surrogate model

— Optimized using a black-box or derivative-free solver (SNOBFIT)
[Huyer and Neumaier, 08]
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COMPUTATIONAL TESTING

e Surrogate generation methods have been implemented into
a package:

ALAMO

(Automated Learning of Algebraic Models for Optimization)

e Modeling methods compared
— MIP - Proposed methodology

— EBS — Exhaustive best subset method
* Note: due to high CPU times this was only tested on smaller problems

— LASSO — The lasso regularization
— OLR - Ordinary least-squares regression

 Sampling methods compared
— DFO - Proposed error maximization technique
— SLH - Single Latin hypercube (no feedback)
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DESCRIPTION — TEST SET A

 Two and three input black-box functions randomly chosen
basis functions available to the algorithms with varying
complexity from 2 to 10 terms

 Basis functions allowed:

Category X,(x) Parameters used

L. Polynomial (zq)” a = {+3,+2,+1,4+0.5}

II.  Multinomial I @)™ for || =2 a={+2, +1,+0.5}
deD'CD

for |D'| =3 «a={£l}

« «
III. Exponential exp (%d) , log (fr—d) a=1 v=1
and logarithmic
forms

True basis function coeflicients were randomly chosen from a uniform distri-
bution where 5 € [—1,1].
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RESULTS — TEST SET A

Model accuracy Function evaluations

<o
o]

S 2
£ Eos
= S
g N
-~ y S04
= — MIP/DFO =
2 --- MIP/SLH =
2 0 — LASSO/DFO 802 |
= --- LASSO/SLH B~ — MIP/DFO
— OLR/DFO ‘ — LASSO/DFO
--- OLR/SLH — OLR/DFO
00 T T T I 00 T T T T T
0 0.002 0.004 0.006 0.008 0.01 0 10 20 30 40
Normalized test error Function evaluations used in training set

45 test problems, repeated 5 times, tested against 1000 independent data points
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MODEL COMPLEXITY — TEST SET A

No. in- No. MIP/ MIP/ EBS/ EBS/ LASSO/ LASSO/ OLR/ OLR/
puts true DFO SLH DFO SLH DFO SLH DFO SLH
terms
2 2 2 2, 2] 2 2 6, 8] 6, 11] [12, 15] (12, 15]
2 3 3 3 3 3 [5, 12] [5, 10] [12, 14] (12, 14]
2 4 3, 4] 3, 4] 3, 4] [3, 4] 8, 11] [8, 10] [11, 12] (11, 12]
2 ) 2, 4] 2, 4] 2, 5] (2, 5] (3, 12] [4, 11] [10, 16] (10, 16]
2 6 5, 6] 6, 6] 5, 6] 6, 6] [7, 10] 6, 7] [11, 13] [11, 13]
2 7 4.6] 4,6 4,7 [47  [7,11  [6,12] (8,13  [8,13]
2 8 4, 5] 5, 6] [4, 5] [5, 6] 6, 8] [6, 9] 10, 15]  [10, 15]
2 9 4, 6] [4, 6] NA NA 6, 14] [7, 12] [10, 17] [10, 17]
2 10 4, 8] 4, 8] NA NA [5, 14] [7, 14] [10, 14] [10, 14]
3 2 2, 3] 2, 3] NA NA 6, 12] [7, 13] 27, 29] 27, 29]
3 3 3, 3] 3, 3] NA NA 8, 16] [7, 15] [19, 22] (19, 22]
3 4 4 3, 4] NA NA [10, 13] [9, 10] [16, 21] (16, 21]
3 5 5 5 NA NA [11, 17] [9, 15] [15, 23] (15, 23]
3 6 5, 6] 6, 6] NA NA [9, 18] [10, 13] [15, 26] (15, 26]
3 7 7 7, 8] NA NA [10, 22] [10, 22] 22 22
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DESCRIPTION — TEST SET B

 Two input black-box functions with basis functions
unavailable to the algorithms with

Function type Functional form

| z(x) = B exp(x;)

I (z) = B log(x;)

I11 z(z) = Baxfay
b

IV z(x) = T

with true parameters chosen from a uniform distribution where 5 € [—1, 1],
a,v € [—3,3],y € [-5,5], and 7,5 € {1, 2}.
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RESULTS — TEST SET B

Model accuracy Function evaluations
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Normalized test error Function evaluations used in training set

12 test problems, repeated 5 times, tested against 1000 independent data points
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MODEL COMPLEXITY — TEST SET B

True Function MIP/ MIP/ LASSO/ LASSO/ OLR/ OLR/

func- 1D DFO SLH DFO SLH DFO SLH
tion

type

I a 5 5 3, 5] 4, 9] 6, 17] 6, 17]
I b 4, 10] 4, 10] 110, 14]  [5, §] 8, 17] 8, 17]
I C 3, 10] 6, 9] 8, 9] 4, 10] (13, 17]  [13, 17]
I1 a 4, 6] [4, 10] 8, 15] 7, 9] [15, 19]  [15, 19]
I1 b 1, 7] 1, 9] (13, 16]  [11, 17]  [13,30] [13, 30]
I1 C 5, 12] 5, 12] 9, 13] 9, 16] 9, 19] 9, 19]
11 a (3, 4] [1, 4] 2, 5] 2, 5] 9, 20] 9, 20]
I11 b 4 1, 4] 5 5 [9, 20] [9, 20]
I11 C 3, 4] 13, 4] 5, 8] 5, 9] [18, 24]  [18, 24]
IV a 7, 8] [4, 10] 8, 17] (11, 18]  [13, 19] [13, 19]
IV b 8, 9] 9, 10] 8, 12] (10, 14]  [9, 17] 9, 17]
IV C 6, 9] 9, 10] 5, 13] 4, 12] [13, 15]  [13, 15]
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BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

Outlet gasT Solid feed
—1
 ——
Cooling :%
water —
CO, rich gas1 1CO2 rich solid outlet
e Model inputs (14 total) e Model outputs (13 total)
— Geometry (3) = Geometry required (2)
— Operating conditions (4) = Operating condition required (1)
— Gas mole fractions (2) = Gas mole fractions (2)
— Solid compositions (2) = Solid compositions (2)
— Flow rates (4) = Flow rates (2)

= OQOutlet temperatures (3)

Model created by Andrew Lee at the National Energy = Design constraint (1)
and Technology Laboratory
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ADAPTIVE SAMPLING

Progression of mean error through the algorithm

16% @
§ L 2
= 12% ‘
(4b) v
(5]
=
)
<
L 8%
©
S
£
= 4% Initial data set:
LL 137 pts
Final data set:
0% - | 261
1 3 5 7 9
Iterations

== [FGas_out - =Gas _In P e THX out == Tgas_out Tsorb_out
- =t = =gamma_out - =|p - eyir e xH20 ads_out
e XHCO3_ads_Out ====zCO2 gas out e===zH20 gas_out
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EXAMPLE MODELS

gas Solid feed

out

tE
|
 —
Cooling %
water =

coriengasp,, Yzt

Py, = 1.0Pgu +0.0231 L, —0.0187 In(0.167 Ly,) — 0.00626 In(0.667 v;) —
51.1 xHCO324s
Fgab
. (1.77-10719) NX? 3.46 1.17 - 107
Tglﬁb = 1.0 T%?b_ ( ) o gas rmsort + ads
: 72 NXTHS T Fsorb NX xH2020
as as 975 TbOIb as gas as 5
FS% = 0.79TF™ — M 0.77 FEE xCO28™ + 0.00465 F£° Tsorb —
f
0.0181 F£* Tsorb xH205™
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CONCLUSIONS

* The algorithm we developed is able to model black-box
functions for use in optimization such that the models are
v’ Accurate
v' Tractable in an optimization framework (low-complexity models)
v Generated from a minimal number of function evaluations

e Surrogate models can then be incorporated within a
optimization framework with global objective functions and
additional constraints

e http://archimedes.cheme.cmu.edu/?g=alamo

ALAMO

Automated Learning of Algebraic Models for Optimization
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Disclaimer

This presentation was prepared as an account of work
sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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