N 'F NATIONAL EN=SRGY TECHNOLOGY LASORATORY

—
/,// p
L
—
L
Regional University Alliance
N_TL Carnegie Mellon PFF\N%TF :"':! niversity of Pittsburgh @ VirginiaTech WestViginaUnivessiy  {JIRS

Dynamic Modellng and Control of a Solid-
Sorbent CO2 Capture Process with Two-stage
Bubbling Fluidized Bed Adsorber-Reactor

Srinivasarao Modekurti, Debangsu Bhattacharyya
West Virginia University

Stephen E. Zithey
National Energy Technology Laboratory

AIChE Annual Meeting 2012, Pittsburgh, PA, USA, October 28-Nov 2, 2012

#°5%, U.S. DEPARTMENT OF

& 3L %
= <)
&\ 5

2 SOk




OUTLINE
¢ Motivation
“* Dynamic Model Development

» Transient Studies

¢ Controller Design
= Proportional-Integral-Derivative (PID) Controller
» Feedback-Augmented Feedforward Controller

= Linear Model Predictive (LMPC) Controller

NG

*%* Conclusions

NETL B NATIONAL ENSRGY TECHNOLOGY LASORATORY



MOTIVATION

» To meet the environmental regulations for CO,
emissions, it I1s required that power plants have to
satisfy certain amount of CO, capture over a period

of time.

» Under Carbon Capture Simulation Initiative (CCSI),
the US DOE is working on various post-combustion
CO, capture technologies, e.g. solid-sorbent based

CO, capture.

» As part of this project, our current focus is on the
development of dynamic models and control
systems for solid-sorbent CO, capture.
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DYNAMIC MODEL DEVELOPMENT

 1-D two-phase pressure-driven non-isothermal
dynamic model of a solid-sorbent CO, capture in a
two-stage bubbling fluidized bed reactor system.
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Each BFB consists of bubble, emulsion and
cloud-wake regions.
Bubble region is free of solids.

. Constant average particle properties

throughout the bed

Adsorption-reaction takes place in solid-
phase.

Solids leave at the top of the bed (Overflow-
type configuration).

No accumulation in the embedded heat
exchangers in the bed.

*Lee, A.; Miller, D. A 1-D Three Region Model for a Bubbling Fluidized Bed Adsorber. Submitted to Ind. Eng. Chem. Res. 2012
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MODEL DEVELOPMENT
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» Gaseous species : CO,, N,, H,0
e Solid phase components: bicarbonate, carbamate, and
physisorbed water.
e Transient species conservation and energy balance
equations for both gas and solid phases in all three
regions.

*Lee, A; Miller, D. A 1-D Three Region Model for a Bubbling Fluidized Bed Adsorber. Submitted to Ind. Eng. Chem. Res. 2012
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CONSERVATION EQUATIONS

Bubble Region :

Gaseous Components

a(Veiy) v 9(yp,iGp;)
%t T4 ox

+ SVKbc,i('Cb,i - ICc,i) + Kg,bulk =0

0(CrgCordV(Tyo ~Trer))  3(CogGu(Ton = Trer))
ot 0x

Cloud-wake Region :
Gaseous Components

+ 6AHbC (Tg,b - Tg,c) - Hg,bulk = O

d(fowbeaVCy,)
= i — - VaKbc,i(Cb,i - Cc,i) + VSKce,i(CC,i - Ce,i) +Vé(l - Sd)fcwrg,c =0
0(CpgCetVifowea (Tye — Trer))
- i at = = - ASHbC(Tg.b - Tg.c) + ASHCE(Tg‘C - Tg,e) + Afcw‘s(l — &g )psaphp(Tg.c - Ts.c)

— fewS(1 = £4)A § _rg,c.iCp.g.c,I(Tg,c - Tref) =0
]
Adsorbed Species

I(Viewd(1 —€a)nci) v a(nglc)
ot Cps  0x

+ Ks,bulk,j + V‘(SKcebs(nc,j - ne,j) — Vfewd(1 —gg)rsc =0

d (AAxfCWSpSCP.S(l - Sd)(TS.C - T?‘ef)) aUr:cp,s (Ts,c - Tref) + hads,c)
pr +A4 F + Hg puik

+ Aapchebs (CP.S (Ts,c - Tref) + hads,c - CP,S(TS,Q - Tref) + hads.e)
+ fcw 6(1 — &q )A Z . rg,c,iCp,g,c,i(Tg,c - T-ref) - Afcw6(1 — &d )psa-php(Tg,c - Ts,c) =0
J
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CONSERVATION EQUATIONS CONTD.

Emulsion Region :

Gaseous Components

a(V(l - fcw(S - 5)50‘. Ce,i
dt
a(CP.gCetV{l - fcw5 - 5)31'1(?15,2 - Tref})
at
~ (= farS = A= 2)A Y TyeiCpgei(Tye = Tre) = 0
]

- 5AKce,i(Cc,i - ICe,i) - Kg,bulk + (1= few6 — A - Ed)r'g,e =0

- A‘ﬁHce(Tg.c - Tg.e) + Hg.buik + (1 - fcw'ﬁ - 6) (1 - Ed)APsaphp (Tg_e - Ts_e)

Adsorbed Species

VA -fwd—=0)1—-¢ :'ne,' V dln, ;
( - at - ;) + P_ (nae;je} - Ks.bulk.j — V8K cebs (nc.j - ne,j) VA - fwd—-6)(1 - Ed)rs,e =0
s

a(cp,spsA(l - ﬁ:w(s - 5)(1 - ed)(Ts.e - Tref)) A a(jeCP,s(Ts,e - Tref) + hﬂds,e)
FT: + ox — Hg pulk
- Aapchebs (CP,S (Ts.c - Tref) + hnds,c - CP,s (Ts.e - Tref) + h-ads.e)

+ (1 - ﬂ:wé‘ - 6)(1 — &4 )AZ . rg,e,icp.g,e,i(Tg,e - Tref) - (1 - fcwa - 6)(1 — &4 )Apsaphp(Tg,e - Ts,e)
J
— Mdyxhe ATy NyxCr =0
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HYDRODYNAMI

C MODE
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REACTION KINETICS

H3;0(g) © Hy0(pnys)

2R,NH + C0y5) < RyNHF + 2R, NCO3

RyNH + €Oy gy + HyO(pnys) © RyNHF + HCO3

}nr,bicarb,i

_ k I:)iCr,HZO,i nr,HZO,i
r1,r,i — ™Mrii C K
rt,i 1r,i
{nr,carb,i + nr,bicarb,i
_ k 1 2 nr,carb,i nr,bicarb,i I:)iCr,COZ,i r.|v nv
i =Ko - - nr,HZO,i -
nv nv Cr,t,i K2,r,i
r]r,carb,i r]r,bicarb,i
2 PC + nr,carb,i
nr,carb,i nr,bicarb,i i~r,CO,,i rlv nv
r-3,r,i = kS,r,i 1-2 - -
nv nv Cr,t,i K3,r,i
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Modeling of balance of the Plant

1. Pressure flow-network along with the control valves

AP
Q = Cvx ?

2. Gas and Solid distributors
AP, = (0.2-0.3) AP,

3. Downcomer and Exit-hopper

4. Other components such as flue-gas stack etc.
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SOLUTION METHODOLOGY

» Integration of sub-models with the adsorber-reactor
model in ACM.

» Setting up initial and boundary conditions.

» ACM model is embedded in Simulink for LMPC
Implementation.

o - N=TL E— NATIONAL ENSRGY TECHNOLOGY LASORATORY



90.0

—o— Overall CO2 capture (%)
825 85.0

0

87.5

.

TRANSIENT STUDIES
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CONTROLLER DESIGNS
1. PID CONTROLLER

 Process models and the controllers are the same as open-loop
case.

« An additional PID controller for controlling CO, capture by
manipulating the solid sorbent flowrate.

 Note the larae undershoot and long settling time.
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Configuration and Performance of the PID Controller
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CONTROLLER DESIGN CONTD.
2.FEEDBACK-AUGMENTED FEEDFORWARD CONTROLLER

« Data for the process and disturbance models are generated by implementing
step changes in the sorbent flowrate and the flue gas flowrate, respectively.

* Process and disturbance models are identified in MATLAB as first-order and
pure-gain-plus-second—order models, respectively.

* [~ step change data
—Model fit

Comparison of the process model
to the data from ACM®
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0 | | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Simulation time (s)
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CONTROLLER DESIGN CONTD.
FEEDBACK-AUGMENTED FEEDFORWARD CONTROLLER

* Note the smaller/shorter undershoot with large overshoot and
settling time
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Configuration and Performance of the Feedback-Augmented
Feedforward Controller
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CONTROLLER DESIGN CONTD.
3. Linear Model Predictive Controller (LMPC)

* Identification of a multiple-input-single-output (MISO) auto-regressive with
exogenous inputs (ARX) model using MATLAB®

Measured and simulated model output

Estimated using ARX on data set t

Discrete-time[IDPOLY model: A(q)y(t) = B(q)u(t) + e(t)

A(q) =1 - 1.4p8 g1 - 0.1453 g~-2 + 0.5946 g~-3 - 0.04143 g4
B(q) = -0.071[8 g"-1 - 0.01151 g~-2 + 0.01254 g*-3 + 0.07076 -4

Devation from the steady state CO , capture (%)

1 1 1 1
0 1000 2000 3000 4000 5000
Time (s)

ARX model for the process using MATLAB® System identification tool box
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CONTROLLER DESIG

N CONTD.

Linear Model Predictive controller (LMPC)

Measured and simulated model output
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[ Estimated using ARX on data sef| t
B}
= Discrete-time IDPOLY model: A(@y(t) = B(q)u(t) + e(t)
o
T s A@Q) = 1-1.473 g1 + 0.2636 g*-R + 0.2923 q"-3 - 0.08314 q"-4
S tor 1
g B1(q) = -0.03877 q~-1 + 0.1641 g}-2 + 0.05974 q°-3 - 0.1471 -4
[5)
e B2(q) = -4.348 g*-1 + 0.03616 q~-D - 21.36 q°-3 + 20.11 q"-4
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Time (s)

ARX model for the disturbance rejection using MATLAB® System identification tool box
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CONTROLLER DESIGN CONTD.

Linear Model Predictive controller (LMPC)
Servo Problem
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CONTROLLER DESIGN CONTD.
3.1. Offset-free LMPC Using an Integrator (LMPC-I)

Infroduced Disturbance in Flue Gas Flowrate

Actual Disturbance in Flue Gas Flowrate ACM
Desired ey SIHULINK Remote Setpoint Actual
€o, M for the Solid-Sorbent | fd - Co,
Capture | Flowrate Caplure
P M
Y
Error Integrator

Configuration of LPC with
Additional Integrator
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Manipulating variable is sorbent
flowrate.

ACM model is embedded in
SIMULINK for MPC
Implementation.

20% step increase in flue gas
flowrate as disturbance.
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CONTROLLER DESIGN CONTD.
3. 2. Offset-free LMPC Using Estimation of Unmeasured

Disturbance (LMPC-II)

Infroduced Disturbance in Flue Gas Flowrate

Actual Disturbance in Flue Gas Flowrate
SIMULINK

ggsired M Remote | g~ . [Aclud

Cazture Setpoint (= 12 |C0,
Whit : P for the e Capture

"1 Unmeasured Solid-Sorbent] ="

NOE ) Disturhance Flowrate
Innovations Model |_’ C

Configuration and performance of
LMPC with
estimation of unmeasured
disturbance
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Estimation of unmeasured disturbance
using advanced Controllers of MPC
toolbox in MATLAB @,

The ACM model is embedded in
SIMULINK for MPC implementation.
20% step increase in flue gas flowrate.
Performance is satisfactory even for
other disturbances.
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CONTROLLER PERFORMANCE
COMPARISON

—Desired CO2 capture ContrOI performances Of LMPC'I and LMPC'”
—ldeal are superior to others

—Open-Loop
—PID
—FBAUGFF
===LMPC-I
«=LMPC-ll

thry () (hr?)

(1) PID 0.8111 1.7551 1.12E-04

(2) FBAUGFF 0.4751 0.5502 6.60E-05
(3) LMPC-I 0.3913 0.6138 5.57E-05
(4) LMPC-II 0.4007 0.6386 6.30E-05
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CONCLUSIONS

1. A one-dimensional, non-isothermal, pressure-driven dynamic
model of a two-stage BFB adsorber-reactor has been
developed for solid-sorbent CO, capture in ACM.

2. The dynamics of CO, capture have been studied for step
changes in flue gas inlet flowrate, temperature and
composition.

3. Different control strategies have been considered for
disturbance rejection.

4. Among all the designs, the performances of both LMPC
strategies are superior to others.
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