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Facilitate the rapid screening of new concepts and technologies 
 

Enable identification & development of optimized process designs 
 

• Multiple potential technologies for carbon capture 
– Different reactors types 
– Different sorbent materials 
– Different regimes (high T, low T, PSA, TSA) 

• Need systematic way to evaluate candidate processes, materials 
– Need to consider best process for different materials 

 
• Identify configurations for more detailed simulation (i.e., CFD) 
• Integrate and optimize the entire process system  

– PC plant, carbon capture process, and compression system 

 
 

CCSI Process Synthesis & Design 
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Heterogeneous Simulation-Based Optimization Framework 
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Solid Sorbent Adsorber/Regenerator 
Moving Bed Regenerator Bubbling Fluidized Bed Adsorber 

• Models function as adsorber or regenerator 
• Predictive, 1-D models 
• Implemented in AspenTech software 
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Adaptive Sampling

Goal:  Build a model           for each output          . 

ALAMO

Accurate

 Tractable in algebraic optimization:  Simple 
functional forms

Generated from a minimal data set
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Model outputs (13 total) 
Geometry required (2) 

Operating condition required (1) 

Gas mole fractions (2) 

Solid compositions (2) 

Flow rates (2) 

Outlet temperatures (3) 

Design constraint (1) 

BUBBLING FLUIDIZED BED 

• Model inputs (14 total) 
– Geometry (3) 
– Operating conditions (4) 
– Gas mole fractions (2) 
– Solid compositions (2) 
– Flow rates (4) 

Bubbling fluidized bed adsorber diagram 
Outlet gas Solid feed 

CO2 rich gas CO2 rich solid outlet 

Cooling 
water 
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Example models 
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• Scenario:  
– Retrofit of new 650 MWe supercritical PC plant 

 
• Requirement: 90% capture  

 
• Objective: minimize Cost of Electricity 

– Function of 
• Parasitic energy requirements for capture & compression 

– Direct electricity use 
– Parasitic steam extraction 

• Capital cost of capture and compression systems 
– Literature correlations, hooks for proprietary data 

• Operating costs (fuel, labor, materials) 
– Assumes PC plant is fixed 

 
• Formulated in GAMS, solved with BARON 

 

Optimization Formulation 
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Preliminary Results 
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Carbon Capture PC Plant Compression 
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Hybrid Carbon Capture Process System (A650.1) 
2 stage, counter-currently connected bubbling fluidized bed adsorber + moving bed regenerator 

15 

∆Loading 
1.8 mol CO2/kg 

0.66 mol H2O/kg 

Solid Sorbent MEA 
  This process Oyenekan 
Q_Rxn (GJ/ton CO2) 1.82 1.48 

Bicarbonate  0.04 - 
Carbamate  1.41 - 

Water 0.38 - 
Q_Vap (GJ/ton CO2) 0.00 0.61 
Q_Sen (GJ/ton CO2) 0.97 1.35 
Total Q 2.79 3.44 
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• Approach for combining 
– Simulator-based models 
– Advanced optimization tools 

• ALAMO 
• Superstructure for determining optimal configuration 
• Derivative-free optimization (DFO) 

• Resulting framework for optimal design 
• Developed initial design for further demonstration of 

CCSI Toolset 

Conclusions 
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This presentation was prepared as an account of work 
sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, 
nor any of their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its 
use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade 
name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government 
or any agency thereof. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

Disclaimer 
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