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Synthesis of optimal capture processes
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CCSI Process Synthesis & Design

Facilitate the rapid screening of new concepts and technologies

Enable identification & development of optimized process designs

Multiple potential technologies for carbon capture
— Different reactors types
— Different sorbent materials
— Different regimes (high T, low T, PSA, TSA)
Need systematic way to evaluate candidate processes, materials
— Need to consider best process for different materials

Identify configurations for more detailed simulation (i.e., CFD)
Integrate and optimize the entire process system
— PC plant, carbon capture process, and compression system
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Heterogeneous Simulation-Based Optimization Framework
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Cooling Water _|
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Solid Outlet _41

* Models function as adsorber or regenerator

Solid Sorbent Adsorber/Regenerator

Bubbling Fluidized Bed Adsorber

Outlet Gas
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Inlet Gas

* Predictive, 1-D models
* Implemented in AspenTech software
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Methodology for Determining Optimal
Process Configurations

Detailed model Develop Formulate and solve
developed in Algebraic superstructure to determine
commercial process ROM optimal process configuration
simulation tool
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ALAMO Algorithm for Surrogate Model

ALAMO

Algebraic Model Checklist

Build Surrogate Model

Goal: Build a model Zz(x) for each output z(x

Inputs:
xre et

v’ Accurate D

Model functional form

4

Process
block

v’ Tractable in algebraic optimization: Simple
functional forms

v’ Generated from a minimal data set

-Start @
ALAMO — Outpuls:

Initial sampling
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Step 3: Determine model complexity

Information criterion = Accuracy + Complexity

Algorithm I

Build surrogate
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BUBBLING FLUIDIZED BED

Bubbling fluidized bed adsorber diagram

Outlet gast Solid feed
— !
Cooling_’g
water =
CO, rich gas1 1CO2 rich solid outlet
 Model inputs (14 total) e Model outputs (13 total)
— Geometry (3) = Geometry required (2)
— Operating conditions (4) = Operating condition required (1)
— Gas mole fractions (2) = Gas mole fractions (2)
— Solid compositions (2) = Solid compositions (2)
— Flow rates (4) = Flow rates (2)

= Qutlet temperatures (3)
= Design constraint (1)
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Example models

tEs Solid feed
1
Cooling ' E
water —
C02 rich gas 1Pin 1T§)?1125b
P, = 1.0Pgu +0.0231 L, —0.0187 In(0.167 Ly,) — 0.00626 1n(0.667 v;) —
51.1 xHCO32ds
o (1.77-10719) NX* 3.46 1.17 - 10*
o = 1-0T§?b—( ) - gas msorb d
| Y’ NX TES T Fsorb NX xH2020°
as as 97r T?’Ol‘b as as as
FES = 97 FEs - T2 in () 77 FES xCO28™ + 0.00465 FE Tsorb —
/}f
0.0181 F&* TP xH205™
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Optimization Formulation

e Scenario:
— Retrofit of new 650 MWe supercritical PC plant

 Requirement: 90% capture

e Objective: minimize Cost of Electricity

— Function of
» Parasitic energy requirements for capture & compression
— Direct electricity use
— Parasitic steam extraction
« Capital cost of capture and compression systems
— Literature correlations, hooks for proprietary data
» Operating costs (fuel, labor, materials)

— Assumes PC plant is fixed

e Formulated in GAMS, solved with BARON
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Preliminary Results
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Heterogeneous Simulation-Based Optimization Framework

Q'S_intfér & Excel.. - fS_intér & Excel . Q'S_int:ér & Excel .
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PC Plant Carbon Capture Compression
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Enabling a Distributed Execution Environment

License Server > Simulation
S Windows Cluster:
Amazon Cloud or
0 Local resource
Simulation
Simulation
Optimization
Framework
Database of
Simulations
and Results
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Hybrid Carbon Capture Process System (A650.1)

2 stage, counter-currently connected bubbling fluidized bed adsorber + moving bed regenerator
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Conclusions

e Approach for combining
— Simulator-based models
— Advanced optimization tools
« ALAMO
» Superstructure for determining optimal configuration
» Derivative-free optimization (DFO)

e Resulting framework for optimal design

e Developed initial design for further demonstration of
CCSI Toolset
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Disclaimer

This presentation was prepared as an account of work
sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof,
nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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