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Abstract

The development and expansion of wind energy is considered

a key threat to bat populations in North America and globally.

Several approaches to mitigating the impacts of wind energy

development on bat populations have been developed,

including curtailing wind turbine operation at night during

lower wind speeds when bats are thought to be more active.

Blanket curtailment approaches have shown substantial

promise in reducing bat fatalities at wind energy facilities,

but they also reduce the amount of energy extracted from the

wind by turbines. A related approach, referred to as smart

curtailment, uses bat activity and other variables to predict

when bats will be at the greatest risk at a given wind facility. In

some contexts, a smart curtailment approach might reduce bat

fatalities while also reducing energy loss relative to blanket

curtailment. However, it has not been clear how to compare

blanket curtailment and smart curtailment approaches in terms

of annual energy production at wind facilities. Here, we

describe a new approach to simulating the influence of blanket

and smart curtailment approaches on energy production at

wind energy facilities, and demonstrate the approach using 6

wind energy development areas in the Canadian province of

Alberta. We show how stakeholders involved can explore the

potential influences of various kinds of bat activity on energy

production. We present the results of our Alberta analysis and
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conclude with some caveats and recommendations for future

work on simulating the influences of bat curtailment on energy

production at wind energy facilities.

K E YWORD S

annual energy production, bats, echolocation, smart curtailment, wind
energy, wind speed

A key current and future threat to bat populations in North America is the broad‐scale adoption of wind‐generated

power (Arnett and Baerwald 2013, Hayes 2013, Arnett et al. 2016, Frick et al. 2017, Friedenberg and Frick 2021).

Bat ecologists have become increasingly concerned about the impacts of wind energy development on bats, and

numerous research projects and publications have documented impacts and have proposed approaches for

mitigation (Arnett et al. 2016, Hein and Schirmacher 2016, Solick et al. 2020, Whitby et al. 2021). One approach to

reducing bat fatalities at wind energy facilities is referred to as curtailment, which involves temporarily slowing or

stopping turbine blades so they are not a risk to bats that are flying in close proximity to the wind turbines. There

are 2 main approaches to curtailment currently used: blanket curtailment and smart curtailment. Blanket

curtailment involves curtailing wind turbines at night whenever wind speeds are within a given range when bats are

thought to be most active (e.g., curtailing at night when wind speeds are <5.0 m/s; Arnett and Baerwald 2013,

Arnett et al. 2016). Smart curtailment, on the other hand, can combine any number of relevant variables to predict

when bats either are or might be in the area, and then make automated decisions about when to curtail wind

turbine operation only when bats are at heightened risk. For example, in a recent smart curtailment study (Sutter

and Schumacher 2017, Hayes et al. 2019), acoustic sensor systems were mounted on a subset of turbines at a wind

energy facility to detect bat activity in the area. The acoustic systems were connected to a custom computer server

and other hardware and software that processed acoustic data, which in turn combined this information with wind

speed data, and then communicated near real‐time risk conditions to the wind operator's supervisory control and

data acquisition (SCADA) system. In the Hayes et al. (2019) study, the SCADA system initially curtailed turbines for

30minutes and then the SCADA system evaluated whether to continue curtailment or return to normal operation

every 10minutes thereafter. This approach to smart curtailment resulted in a > 80% reduction in bat fatalities found

inside search plots when compared to control (not curtailed) turbines. However, although the Hayes et al. (2019)

study resulted in substantially reduced bat fatalities at smart curtailment turbines, the costs and technical

complexity associated with the system were not trivial (Hayes et al. 2019). We note that smart curtailment

approaches do not assume that all bats are detected, but rather assume that when bats are active around a wind

energy facility some of the bats will likely echolocate and produce sounds that are detectable. We also note that

smart curtailment approaches have not yet been validated as effective in a variety of environmental contexts and

bat species assemblages (Hayes et al. 2019).

It is not clear how blanket curtailment and smart curtailment approaches might influence power production at a

given wind energy facility. Thus, it is difficult for wind energy producers, wildlife agencies, and other stakeholders to

make decisions about which curtailment approach to use to reduce bat fatalities at wind energy facilities (Arnett

et al. 2016, Hein and Schirmacher 2016). Beginning in 2018, we participated in discussions with Alberta

Environment and Parks, Electric Power Research Institute (EPRI), and American Wind Wildlife Institute (AWWI)

about the possibility of conducting one or more smart curtailment field studies in the province of Alberta, Canada.

Based on the Hayes et al. (2019) study and the bat assemblage that occurs in Alberta, we suspected that a smart

curtailment approach would likely work well to reduce bat fatalities at wind energy facilities in the province.

However, it became clear that we did not know how a smart curtailment strategy might compare to a technically

simpler blanket curtailment approach in terms of energy production. The uncertainty resulted in wind energy

producers being unwilling to commit to using a smart curtailment approach, such as described in Hayes et al. (2019),
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until they had a better understanding of the relative energy losses expected to be associated with smart curtailment

and blanket curtailment. We decided that a logical next step was to develop a numerical approach that would allow

comparison of simulated results of blanket curtailment and smart curtailment, and in particular would allow

comparison of the influences of both approaches on energy production at wind energy facilities. Thus, we

developed a simulation approach that combined publicly available wind regime data with available bat activity data

to compare the potential influences of blanket curtailment and smart curtailment on annual energy production

(AEP) at existing wind energy facilities in Alberta and elsewhere. We considered AEP to be the estimated annual

energy production for a given wind turbine or wind energy facility, based on the wind speeds experienced at that

location over a 1 year period and the wind turbine manufacturer(s) and model(s), using the theoretical power curve

for each wind turbine and the wind speeds measured at nacelle height.

While developing our approach, we concluded that simulating the impacts of blanket curtailment and smart

curtailment on AEP required an understanding of 6 key variables: (1) the curtailment period or season (e.g.,

August, September, and October of each year); (2) the wind regime, especially the nighttime winds during the

curtailment season, in fine temporal‐scale increments (e.g., 10 minute increments); (3) the wind speed

curtailment threshold below which curtailment is implemented (e.g., 5.0, 6.0, 7.0 m/s); (4) bat activity patterns

during the curtailment season, ideally at nacelle level (e.g., average bat passes detected per night using bat

detectors); (5) the turbine model (e.g., Vestas V82 model with 80 m hub‐height; Vestas 2005); and (6) the number

of turbines at a given wind energy facility. Here, we present the simulation approach we developed to analyze

and consider possible influences of curtailment on energy production at wind energy facilities. We use publicly

available information about wind energy facilities in Alberta, Canada, as an example to demonstrate the

approach, and then discuss how stakeholders can interpret the results from this and similar simulations. We also

express caveats and propose suggestions to be considered when simulating the influence of bat curtailment on

energy production at other wind energy facilities.

METHODS

We selected 6 wind energy areas in southern Alberta to use in simulating the influences of blanket curtailment and

smart curtailment on AEP: Pincher Creek (170 turbines; latitude = 49.486, longitude = −113.950); Fort Macleod

(184 turbines; latitude = 49.726, longitude = −113.398); Halkirk (83 turbines; latitude = 52.281, longitude =

−112.148); Taber (57 turbines; latitude = 49.785, longitude = −111.151); Irma (22 turbines; latitude = 52.912,

longitude = −111.230); and Alder Flats (proposed, number of turbines unknown; latitude = 52.873, longitude =

−114.887). We referred to each of these areas as a Curtailment Analysis Area (CAA). The CAAs were each located

in an area of wind energy development in Alberta (Figure 1). The Pincher Creek, Fort Macleod, and Taber CAAs are

relatively close to one another (<135 km apart) in the southern part of Alberta near the border with the U.S. state of

Montana, while the Halkirk, Irma and Alder Flats CAAs are further north of these locations (>280 km; Figure 1).

Information on the number of turbines, turbine manufacturer, model, and hub height for the CAAs were extracted

from a report by the Canadian Wind Energy Association (CWEA 2018) and from other publicly available sources.

For our simulation study, we analyzed the influence of curtailment on a common wind turbine model (Vestas V82

turbine; Vestas 2005), but the approach we developed allows comparison of the influence of different turbine

models.

For the purposes of analysis, we considered the wind regime for a given CAA to be the vector of wind speed

estimates for each 10minute increment for the period from 2008–2010 (see below). The wind regime data for a

given CAA was then combined with simulated bat activity data to estimate the curtailment status of a hypothetical

wind turbine in that CAA during each 10minute increment of the 3 year period. This information was then used to

estimate AEP for each of 3 years for the hypothetical wind turbine in that CAA under the influence of blanket

curtailment and smart curtailment. Lastly, we show how the energy production and loss for the various curtailment
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approaches can be compared for a given wind energy facility, using a hypothetical wind energy facility in the

Pincher Creek CAA consisting of 170 Vestas V82 wind turbines.

Wind regime data

We extracted wind regime data and environmental conditions at standard nacelle height (80 m) from a publicly

available dataset of modeled wind data (wind data; Environment and Climate Change Canada, Modeled Historical

Wind Atlas Data, www.windatlas.ca/index-en.php.). The modeled wind data was developed as part of the Pan‐

Canadian Wind Integration project, which used a 3‐dimensional atmospheric model run over a 3 year period

(2008–2010) at a spatial resolution of ≈2 km horizontal grid dimension (e.g., ≈4 km2 grid cells) and 10minute

increments. We concluded that this dataset provided a relatively fine‐scale geospatial model of wind speed over all

of Canada, including Alberta, that would be useful in curtailment analyses. In our analysis, we used wind datasets to

represent past wind regimes associated with each CAA. Wind datasets included estimated average wind speed in

meters per second (m/s) in 10 minute increments over 3 years from 2008 to 2010 for each CAA. Wind speed data

used for each of these sites consisted of estimated average wind speed for each of 52,704 10minute increments in

year 2008 and 52,560 10minute increments in 2009 and 2010. The difference in the total number of 10minute

increments in 2008 versus 2009 and 2010 is the result of there being 366 days in 2008, while there were 365 days

in 2009 and 2010. The wind data are useful because they provide fine spatial and temporal scale information on

how wind speeds vary on annual, seasonal, and daily scales for a given geographic area of interest, and how wind

speed trends vary over multiple years. Wind data were available from all areas of Canada, and similar data are

publicly available in the United States (https://maps.nrel.gov/wind-prospector). More detail about the statistical

downscaling used to produce these wind speed datasets and the relevant citations associated with these

approaches can be found at www.windatlas.ca/methodology-en.php.

As a final step of the wind data analysis, we calculated the mean, minimum, and maximum wind speeds for each

CAA for each year. We then fit the 2 parameter Weibull distribution to each wind speed dataset, and obtained the

F IGURE 1 Map of Curtailment Analysis Areas (CAA) in Alberta, Canada that were used in this analysis.
Approximate locations of CAA's are indicated by numbered black stars. CAA's are: 1 = Pincher Creek; 2 = Fort
Macleod; 3 = Halkirk; 4 = Taber; 5 = Irma; and 6 = Alder Flats.
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Weibull shape and scale parameter estimates for the best‐fitting distribution. Wind researchers commonly use this

information to compare wind regimes because it allows quick comparisons among wind regimes in different

geographic locations (Wagner and Mathur 2013).

At the outset of analysis, it was unclear how the modeled wind speed data described above (in 10minute

increments) compared to the available historic wind‐speeds for a given CAA. Historic wind speed data for Canada is

maintained by the Canadian Wind Energy Atlas. However, those data are only available in 1 hour average wind

speed estimates, while the modeled wind‐speed data is provided in 10minute increments. Thus, for the Pincher

Creek CAA, we used historic wind speed data and compared these data to modeled wind speed data to gain a better

understanding of possible differences among the available wind speed datasets for a given area of interest. To

simulate 10minute increments for the historic wind speed data, these 1 hour historic wind speed averages were

used for each 10minute increment in a given hour.

Bat activity data

We compiled acoustic bat activity information from pre‐ and post‐construction acoustic surveys conducted during

the summer and autumn (August to mid‐October) at wind energy facilities associated with CAAs in Alberta that

Alberta Environment and Parks had access to and made available for use in our analysis. The bat activity data

included information on average bat passes detected at nighttime during summer and autumn months at 21

locations (mean calls/night = 8.6; minimum calls/night = 1; maximum calls/night = 47). Alberta Environment and

Parks was not able to provide information on how the bat activity data were collected, or at what height above the

ground. We assumed that the data were collected at near‐ground level, and a more refined analysis would benefit

from bat activity data collected at hub height and using standardized procedures and equipment. Bat activity at

these locations is important for smart curtailment analysis because the amount of activity recorded at wind energy

facilities will influence how often a smart curtailment model using acoustic information will trigger curtailment and

thus influence the energy produced at the facility. As a simplified example, 5 bat call sequences (i.e., passes)

detected uniformly throughout a given night might result in a smart curtailment model triggering curtailment 5

separate times. On the other hand, 5 passes that occur within a short period might only trigger curtailment once or

twice for a shorter total curtailment time. Figure 2 shows simplified examples of bat call data (0 = no bat detected,

1 = bat detected) with low, medium, and high bat activity levels distributed at uniform and random intervals in the

call data. We did not have empirical data to suggest which approach, uniform or random, would provide a closer

approximation to the actual bat activity occurring at these Alberta wind energy facilities.

Numerical simulations

We generated simulated bat activity data to represent different activity patterns that might be expected to occur at

Alberta CAAs, based on the acoustic bat activity data available at the time we developed this analysis. Most bat

fatalities at wind energy facilities in Alberta and elsewhere in North America occur between mid‐July through

October (Arnett and Baerwald 2013, Arnett et al. 2016, CWEA 2018). For analysis, we assumed that curtailment

would only take place during August, September, and October, and defined this period as the curtailment season.

Next, we determined the number of 10minute increments for each night during this 3 month curtailment season.

We defined the potential curtailment period for each night as 30minutes before sunset on a given day to

30minutes after sunrise on the following day. For the 3 month curtailment season in southern Alberta this resulted

in 6,874 10minute increments over 91 nights. Using these data, we estimated the probability (from 0 – 1) of a

random bat call occurring during a given 10minute increment, and we then estimated the maximum, minimum, and

mean probabilities that a 10minute increment contained a bat pass, which would then in turn trigger smart
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curtailment. For simplicity, we rounded estimates to nearest fractions, such that the curtailment probabilities for

individual 10minute increments were 0.50 (maximum; high simulated activity), 0.01 (minimum; low simulated

activity), and 0.10 (mean; average simulated activity).

We then spread uniform and random bat activity patterns across the 6,874 10minute increments for each

activity scenario (Figure 2). For example, one bat pass was created for every other 10minute increment for the

uniform high activity scenario, for every hundredth 10minute increment for the uniform low activity scenario, and

for every tenth 10minute increment for the uniform average activity scenario. For the random bat activity patterns,

we programmed R (version 3.5.1; R Core Team 2018) to choose a 1 (bat activity) or 0 (no bat activity) for each

10minute increment using the maximum, minimum, and mean probabilities for high, low, and average bat activity

scenarios. We followed this approach for each CAA assuming high, medium, and low simulated bat activity and

random and uniform bat activity patterns.

We conducted analysis using the 6 bat activity pattern scenarios for each CAA using wind data assuming high,

medium, and low simulated bat activity and random and uniform activity patterns. We used 11 possible operational

scenarios as follows: (1) no mitigation, which assumed that at all times during the year turbines produced energy at the

expected rate for the geographic location; turbine model; hub height; and current average wind speed for a given time

increment (e.g., 10minute increment); (2) and (3) blanket and smart curtailment at night during August–October at wind

speeds < 5.0m/s; (4) and (5) blanket and smart curtailment at night during August–October at wind speeds < 5.5m/s;

(6) and (7) blanket and smart curtailment at night during August–October at wind speeds < 6.0m/s; (8) and (9) blanket

and smart curtailment at night during August–October at wind speeds < 6.5m/s; and (10) and (11) blanket and smart

curtailment at night during August–October at wind speeds < 7.0m/s.

F IGURE 2 Simple examples of bat activity and temporal distribution patterns using low, medium, and high
levels of bat activity distributed at uniform and random intervals. Each of the 6 cells in the figure represents
50 10minute nighttime intervals. A 1 indicates that bats were detected during a given interval, while 0 indicates
bats were not detected. On the horizontal axis, bat activity increases to the right. On the vertical axis, uniform
indicates bat activity that is equally spaced for each of the 3 bat activity levels and random indicates random
patterns of bat activity for the 3 bat activity levels. Note that due to space constraints the Low (0.01 probability) cell
only shows 50 numbers, but it would require 99 0's to accurately represent the 0.01 probability.

6 of 14 | HAYES ET AL.

 23285540, 2023, 1, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/w
sb.1399 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [05/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



We conducted simulations for the years in which data were available in the wind data (3 concurrent years,

2008–2010), which provided insight into inter‐annual variation in wind speeds and how this variation might

influence annual energy production. We concluded that simulations based on these 3 years of wind data should be

sufficient to provide us with enough information to complete a preliminary analysis of the impacts of various

curtailment scenarios at these CAAs in Alberta, and suggest directions for future analysis and work.

We developed our simulation code in the R statistical computing environment. The code combined the wind

speed and simulated bat activity data into data frames for analysis. We estimated sunset and sunrise times to the

nearest minute for a given CAA and day (see below). This, in turn, facilitated calculation of other variables needed

for the analysis, including estimated wind energy production for each increment of time. We used this information

to estimate annual energy production given the wind regime and a standard wind turbine model (Vestas V‐82) at

each CAA in Alberta, as well as the operational time and energy production lost as a result of the various

curtailment scenarios. Each of these simulation scenarios included an analysis of wind speed along with an energy

analysis in Megawatt‐hours produced per annum (MWh/a) for each site.

We used the package suncalc (Thieurmel and Elmarhraoui 2019) to calculate sunset and sunrise times for each

day of 2008, 2009, and 2010 for each of the CAAs. The sunset and sunrise times of a given location in geographic

space will vary depending on the time of year and the latitude and longitude of the location. The sunset and sunrise

calculations used the central latitude and longitude of each CAA in decimal degrees to estimate the sunset and

sunrise time for each day during the 3 year period analyzed. We used the package bReeze (Graul and Poppinga

2018) to analyze and visualize wind data and calculate estimated energy production based on wind speed and wind

turbine manufacturer and model, using the theoretical power curve for a Vestas V82 turbine with 80m hub height

(Vestas 2005). We used the package MASS (Modern Applied Statistics with S; Ripley et al. 2022) to fit Weibull

distributions to the wind speed datasets and obtainWeibull shape and scale parameter estimates for the best‐fitting

Weibull distribution for each CAA and year. The R code and wind speed data used for this analysis are posted and

freely available online: https://github.com/mark-a-hayes/curtailment.

RESULTS

The maximum, minimum, and mean bat passes per night for 21 wind energy facilities in Alberta was 47.0, 1.0, and

8.6, respectively. Histograms for wind regimes for each CAA for years 2008–2010 are shown in Figure 3. The mean,

minimum, and maximum wind speed estimates for each CAA for each full year are shown in Table 1 (Hayes et al.

2021). The shape and scale parameter estimates for the best‐fitting 2 parameter Weibull distribution are also

shown for each dataset. Across the 6 CAAs analyzed over 3 years, average wind speeds ranged from 5.5–7.0 m/s.

Annual, seasonal, and nocturnal wind speed trends and AEP estimates based on these modeled wind speeds for

each year tended to be similar for the same CAA. However, there were differences in wind speed averages and

trends among years and CAA locations, and the estimated AEP for the same site varied among years.

Under normal operation from 2008 to 2010, the mean AEP for CAAs in this study ranged between 3,538.0

(Alder Flats) and 5,904.0 MWh (Megawatt‐hours; Halkirk) per turbine, with a mean ± standard deviation of

4,888.0 ± 840.0 (Table 2). Variance in AEP per turbine (as measured by standard deviation) was greater between

years than between CAAs (Table 2). Mean AEP per turbine for blanket curtailment across CAAs and years ranged

between 4,806.8 MWh at a wind speed threshold of 7.0 m/s and 4,877.8 MWh at a wind speed threshold of

5.0 m/s, corresponding with mean AEP losses of 1.7% and 0.2%, respectively (Table 2, Figure 4).

Annual energy production loss using smart curtailment across CAAs and years was less than AEP losses using

blanket curtailment, ranging from a mean minimum loss of 0.0% at a curtailment treatment of 5.0 m/s (range = 0.00

to 0.01%) to a mean maximum loss of 0.9% at a curtailment treatment of 7.0 m/s (range = 0.56 to 1.25%), resulting

in a mean difference in energy savings of 0.9% between smart curtailment treatments (Figure 4). This corresponded

with mean improvements in AEP over blanket curtailment from a minimum of 49.6% at 5.0 m/s to a maximum of
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99.1% at 7.0 m/s for smart curtailment treatments. Thus, smart curtailment ranged from approximately 50 and

100% better than blanket curtailment in terms of reducing AEP loss.

Mean AEP was similar between uniform (4,797.78 MWh) and random (4,797.74 MWh) modeled temporal bat

distribution patterns across CAAs and curtailment treatments (Figure 4). We conducted a paired t‐test comparing

AEP loss between uniform (x̅ = 0.247%) and random (x̅ = 0.249%) distributions and found that bat activity pattern

did not have a significant impact on loss of AEP (P = 0.052 at α = 0.05). These results, however, suggested some

evidence for a difference between uniform and random bat activity; scenarios with uniform bat activity tended to

result in slightly higher AEP loss, especially when the curtailment threshold was at higher wind speeds. In contrast,

AEP loss was substantially different between low (x̅ = 0.02%) and high (x̅ = 0.61%) bat activity levels across CAAs

and curtailment treatments (Wilcoxon sign rank test; P < 0.001 at α = 0.05; Samuels et al. 2012), suggesting that the

level of bat activity at a wind energy facility has a significant influence on AEP loss.

Mean percent AEP loss was negligible (<0.03%) across all smart curtailment treatments when simulated bat

activity levels were low, and ranged between 0.03 and 0.21% for average bat activity levels across all treatments

(Figure 4). Annual energy production losses for smart curtailment were greater when bat activity levels were

high, ranging between 0.13 and 1.08%, but were still generally half the AEP loss incurred under blanket

curtailment across all treatments (0.26 to 2.13%; Figure 4). The difference between percent AEP loss under

blanket curtailment and smart curtailment became more pronounced at greater wind speed curtailment

thresholds, with the greatest energy savings at 7.0 m/s curtailment for facilities with relatively low bat activity

levels (Figure 4).

Energy production differed between modeled and historic wind speed data for Pincher Creek. Average and

maximum wind speeds varied between the 2 datasets, which affected the Weibull shape and scale parameters

F IGURE 3 Histograms of estimated wind speeds (m/s) at 80m in 10minute increments for years 2008–2010
for each Curtailment Analysis Area (CAA). The x‐axis indicates wind speed and the y‐axis is density of the histogram
across the wind speeds.
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(Tables 1 and 2). The historic dataset produced markedly lower megawatt‐hours of energy each year of the analysis

under normal operations compared to modeled Pincher Creek data (Table 2).

Average annual energy production and loss over 3 years (2008–2010) for 170 theoretical Vestas V82

wind turbines at the Pincher Creek CAA are shown in Table 3. Total average energy loss for this hypothetical

wind energy facility ranged from 1,417 (5.0 m/s) to 10,823 (7.0 m/s) MWh per year using blanket curtailment

and 331 (5.0 m/s) to 2,116 (7.0 m/s) MWh per year using smart curtailment. The average estimated energy

production and loss for a full hypothetical wind energy facility using blanket curtailment and smart curtailment

under a range of assumed wind speed thresholds can be calculated once the energy production and loss

under those same scenarios are known for a single wind turbine of the same model (Table 3). We note that

Table 3 does not calculate the impacts of blanket curtailment and smart curtailment on revenues at the full wind

energy facility, as was calculated, for example, in Hayes et al. (2019) and Rabie et al. (2022). These revenue

calculations require information about daytime and nighttime energy spot prices in a given region, how these

prices change seasonally and annually, and the availability of tax credits to wind energy producers (Hayes

et al. 2019).

TABLE 1 Mean, minimum, and maximum wind speed, and Weibull shape and scale parameter estimates for
each curtailment analysis area (CAA) for each full year (2008–2010). Abbreviations: Min =minimum; Max =maximum;
PC‐historic = historic wind data for Pincher Creek. Mean, Min, and Max are in m/s. Shape and Scale areWeibull shape
and scale parameters.

CAA Year Mean Min Max Shape Scale

Pincher Creek 2008 6.6 0 21.2 1.95 8.08

2009 7.0 0 25.5 1.70 7.85

2010 6.6 0 21.2 1.69 7.31

PC‐historic 2008 6.6 0 29.4 1.71 7.57

2009 6.2 0 27.8 1.61 7.16

2010 5.7 0 24.7 1.59 6.63

Fort Macleod 2008 6.1 0 21.1 1.88 6.87

2009 6.2 0 24.8 1.86 7.01

2010 6.1 0 22.9 1.81 6.88

Halkirk 2008 6.9 0 21.4 2.25 7.78

2009 6.9 0 26.0 2.26 7.72

2010 6.6 0 27.8 2.19 7.38

Taber 2008 6.3 0 23.9 1.89 7.14

2009 6.5 0 24.3 1.92 7.29

2010 6.1 0 23.2 1.81 6.90

Irma 2008 6.8 0 20.9 2.20 7.68

2009 6.8 0 25.1 2.26 7.64

2010 6.5 0 25.4 2.19 7.30

Alder Flats 2008 5.7 0 19.6 2.10 6.44

2009 5.8 0 24.5 2.13 6.54

2010 5.5 0 24.8 1.99 6.21
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DISCUSSION

The use of smart curtailment shows considerable promise in reducing bat fatalities at wind energy facilities (Hayes

et al. 2019). However, due to uncertainties associated with the relative costs of smart curtailment and blanket

curtailment, it has been difficult for wildlife management agencies, wind energy producers, and other stakeholders

to understand the probable energy losses associated with these approaches. Our analysis represents the first

TABLE 2 Annual Energy Production (AEP) in megawatt‐hours for one Vestas V82 turbine in each Curtailment
Analysis Area (CAA) under normal operation for each year of the analysis, based on modeled wind speed data.
Pincher Creek historic data are not included in the overall mean.

CAA 2008 2009 2010 Mean

Pincher Creek 6,041 5,719 5,185 5,648

PC‐historic 4,824 4,407 3,759 4,571

Fort Macleod 4,743 4,786 4,551 4,693

Halkirk 5,927 6,111 5,674 5,904

Taber 4,664 4,864 4,420 4,649

Irma 5,126 4,996 4,577 4,900

Alder Flats 3,547 3,691 3,376 3,538

Mean 5,008 5,027 4,630 4,889

Standard deviation 921 840 778 840

F IGURE 4 Percent Annual Energy Production loss (% AEP loss) for the 6 Curtailment Analysis Areas (CAAs)
across curtailment treatments and bat activity level scenarios. The x‐axis indicates the curtailment treatments, from
5–7m/s. The y‐axis indicates percent AEP loss relative to normal operations without curtailment. Orange circles
indicate simulations using blanket curtailment (Blanket). Light blue circles indicate smart curtailment using uniform
bat activity scenarios (SC‐Uniform) and dark blue circles indicate smart curtailment using random bat activity
scenarios (SC‐Random).
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simulations that compare the potential use of smart curtailment and blanket curtailment strategies using fine‐scale

wind speed data and simulated bat activity data. The approach we used here required prior wind speed data (e.g.,

using modeled and/or historic wind speed averages), bat activity data, and a model of how a given wind turbine

extracts energy from the wind at given wind speeds (e.g., a power curve relating wind speed to energy extraction;

Wagner and Mathur 2013). The results we present here were for a single hypothetical Vestas V82 turbine with

80m hub height under the influence of the wind regime for a given year, simulated bat activity patterns, and

operational scenario used, and for a hypothetical wind energy facility consisting of 170 Vestas V82 turbines located

in the Pincher Creek CAA.

The wind regimes were similar among the 6 facilities in southern Alberta, but estimated AEP varied among

facilities and between years within facilities, likely due to differences in the wind regimes and inter‐annual, seasonal,

and nighttime wind conditions at these locations. We found that both blanket and smart curtailment resulted in

relatively low AEP loss across all facilities and treatments, ranging between 0.23 and 1.73% power loss for blanket

curtailment and between 0.00 and 0.87% for smart curtailment. The simulated losses may appear relatively small,

especially when comparing differences between curtailment strategies, but it is possible that even 1% power loss

may be economically infeasible for some facilities. Likewise, despite these differences, smart curtailment reduced

AEP losses incurred by blanket curtailment by 50 to 100%. Assuming that bats frequently echolocate during

migration (but see Corcoran and Weller 2018, Corcoran et al. 2021), and are only at risk of collision when exposed

to rotating turbine blades (Peterson 2020, Peterson et al. 2021), smart curtailment appears to be a promising

strategy for maximizing energy production and minimizing potential bat fatalities. However, we did not attempt to

estimate the cost of implementing and maintaining a smart curtailment system, which may be non‐trivial to some

wind energy producers.

The distribution of simulated bat activity did not substantially affect AEP across treatments in our study. We

assumed that random activity would be more clustered in time than uniform activity, and therefore more

representative of real bat data, triggering smart curtailment less frequently than uniform bat activity would. In

future simulations, we recommend striving to clearly understand real‐world bat activity patterns at nacelle heights

TABLE 3 Average annual energy production and loss over 3 years (2008–2010) for a hypothetical wind energy
facility consisting of 170 Vestas V82 wind turbines located in the Pincher Creek Curtailment Analysis Area, using
modelled wind speed data. All energy values are in megawatt‐hours. Abbreviations: normal = normal operation;
blanket = blanket curtailment; SC = smart curtailment. For blanket values, the 2008–2010 values were averaged.
For SC all simulations for the 3 years were averaged.

Curtailment (m/s) Action Energy/turbine Total energy Average energy loss % Loss

N/A Normal 5,648 960,217 0 0

5.0 Blanket 5,640 958,800 1,417 0.148

5.0 SC 5,646 959,886 331 0.034

5.5 Blanket 5,635 957,893 2,323 0.242

5.5 SC 5,644 959,518 699 0.073

6.0 Blanket 5,619 955,173 5,043 0.525

6.0 SC 5,642 959,008 1,209 0.126

6.5 Blanket 5,605 952,850 7,367 0.767

6.5 SC 5,639 958,432 1,785 0.186

7.0 Blanket 5,585 949,393 10,823 1.130

7.0 SC 5,636 958,101 2,116 0.220
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and incorporating this information into analyses, if possible. This information would help clarify the influences of bat

activity patterns on AEP for a location of interest.

The quantity of bat activity was the main driver of AEP differences comparing blanket and smart curtailment

simulations. Under conditions of low bat activity, AEP loss for smart curtailment was negligible across all

curtailment thresholds (5.0 to 7.0 m/s) and nearly identical to AEP under normal operating conditions, and much

less than AEP loss under blanket curtailment. Annual energy production loss under conditions of average bat

activity was also relatively small, ranging between 0.03 and 0.21% for 5.0 and 7.0 m/s curtailment thresholds,

respectively (Hayes et al. 2021). Thus, we conclude that smart curtailment may represent a reasonable curtailment

approach at Alberta facilities with lower bat activity levels, such as locations typically experiencing less than 10 bat

passes per detector‐night (Baerwald and Barclay 2011). Smart curtailment might also be a promising strategy for

facilities located in other areas with relatively low bat activity, such as throughout much of the western United

States, where the number of bat passes per night tend to be relatively low (Hein and Schirmacher 2016, Solick et al.

2020), and in areas that tend to have lower average nighttime wind‐speeds. Low nighttime wind speeds would be

expected to typically result in longer curtailment times and greater AEP loss under a blanket curtailment strategy

(Hayes et al. 2019). Thus, our analysis suggests that the value of smart curtailment could be greatest in regions with

lower bat activity and relatively low nighttime wind speeds.

It is not entirely clear to us why the Pincher Creek CAA scenarios using historic data resulted in much lower

energy production when compared to the Pincher Creek CAA using modeled wind speed data. The historic wind

speed data was only reported in 1 hour time increments, while the modeled wind speed data was reported in

10minute increments. Thus, the historic wind speed measurement for a given hour represented the average wind

speed for that hour. In these cases, if the wind speed was within the curtailment range for any given hour, the

simulation would curtail for the entire hour, not in 10minute increments. This may have resulted in simulated

turbines staying in a curtailment condition for longer periods than they would have if the wind speed was measured

for every 10minute increment. This is an area of continuing inquiry; the relative influences of modeled versus

historic wind speed data are not yet clear to us. The differences in average wind speed measurements for modeled

and historic wind speed data at the Pincher Creek CAA highlight the importance of using high quality wind speed

data measured in small time increments (e.g., 10 minute) for a given location. Recently measured wind speed data

from reliable and well‐calibrated instruments at nacelle height in 10minute increments would likely be superior to

the modelled and historic data used here.

We also recognize that the wind data we used here were derived from weather forecast models that include

necessary simplifications of reality and that these data were developed using one of several possible approaches to

wind regime modeling. The modelled wind data we used were developed using the Global Environmental Multiscale

Model (GEM) using a limited‐area modeling approach (LAM), which is referred to as the GEM‐LAM model approach.

Furthermore, the predicted wind speed conditions for a given location did not necessarily reflect the wind

conditions that a given wind turbine would have been exposed to if located in that area in the timeframe

considered. Numerous variables influence the wind speeds experienced by an individual wind turbine at any time

during a given year (Wagner and Mathur 2013), including: large‐scale weather patterns, such as El Niño‐Southern

Oscillation (ENSO) and annual polar vortex influences; topographic position where a turbine is located, such as the

slope and aspect of the location, along with the adjacent topography; biotic conditions, such as the vegetative

groundcover, habitat type, and associated roughness of the land surface and resulting turbulence at turbine hub

height; and anthropogenic variables, such as the relative locations of nearby wind turbines, roads, and buildings. We

therefore viewed the wind datasets used in our analysis and the analysis itself as a retrospective first approximation

analysis of the wind speeds experienced by a hypothetical wind turbine and a hypothetical wind energy facility, and

the AEP the turbines would be expected to generate if exposed to these wind speeds given the wind turbine

model's theoretical power curve.

When possible, we suggest using long‐term wind speed data (e.g., collected over at least 2 years) collected at

nacelle heights for a given area of interest, ideally in combination with bat activity data also collected at nacelle

12 of 14 | HAYES ET AL.

 23285540, 2023, 1, D
ow

nloaded from
 https://w

ildlife.onlinelibrary.w
iley.com

/doi/10.1002/w
sb.1399 by B

attelle M
em

orial Institute, W
iley O

nline L
ibrary on [05/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



heights over multiple years. However, when such data are not available, our assumption is that using modelled

datasets and a simulation approach similar to what we describe here can help clarify the possible impacts of various

curtailment strategies on wind energy production, and this understanding can then be a foundation for more

advanced analyses at the wind energy facility and regional scale, as needed. For example, wildlife agencies, wind

energy producers, and environmental consultants could use the simulation approach we describe here to make

empirically informed inferences about which curtailment strategies might help individual wind energy producers

meet the long‐term objectives of stakeholders. We conclude that using modeled and historic wind speed data, as

used in this analysis, ideally combined with high‐quality bat activity data collected at nacelle height, should result in

an improved understanding of the relative influences of bat curtailment approaches on energy production at sites of

interest to wind energy developers, wildlife agencies, and others.
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