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  Sustained tonal noise radiated by towers supporting offshore wind turbines contains energy in frequency bands that may disturb marine
mammals, or interfere with passive sonar and seismic sensors and underwater communication equipment. Understanding the generation and
propagation of underwater noise due to the operation of wind farms is important for determining strategies for mitigating the environmental
impact of these noise sources. An analytic model based on a Green's function approach was previously developed for the sound radiated in the
water column by a pulsating cylindrical structure embedded in horizontally stratified layers of viscoelastic sediment [Hay et al., J. Acoust. Soc.
Am. 130, 2558 (2011)]. This model has since been adapted to include relaxation and viscous losses in seawater and empirical loss factors for
the sedimentary layers. For propagation over range-dependent environments the analytic model has been coupled to a parabolic equation code.
Simulations are presented for several bathymetries, sediment types, and tower array configurations. [Supported by Department of Energy DE-
EE0005380]
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INTRODUCTION

Recent proposals to install offshore wind farms in the coastal waters of the United States
has generated interest in understanding the noise that would be generated by the vibrations of
the wind turbine support structures. A model has been developed for the purposes of assessing
the impact that this underwater noise would have on acoustic communication systems, seismic
sensors, and marine mammals.

THEORY

Here we present a model for the sound radiated by arrays of pulsating cylindrical towers or
piles immersed in water and embedded in layers of viscoelastic sediment. The cylinder is
modeled as an ensemble of independent volume sources arranged in a vertical line and
positioned in the water column and sediment along the z axis. The air, water and sediment
layers are assumed to be infinite in the x-y plane but have finite thicknesses along the z axis
with boundaries at z = z j. The layers have densities ρ j, longitudinal sound speeds cl, j,
transverse sound speeds ct, j, shear moduli μ j, shear viscosities η j, and dilitational viscosities ζ j.

The Green’s function for displacement u is derived by considering the momentum equation
for an isotropic, viscoelastic medium(
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where λ= ρc2l is a Lamé parameter. The Green’s function g for displacement at a location r in
the jth layer due to a point volume source located at r0 also within the jth layer, and pulsating
with time dependence e−iωt, satisfies(

λ̂ j + μ̂ j
)∇∇·g+ μ̂ j∇2g+ρω2g= s∇δ(r−r0), (2)

where λ̂ j =λ j − iωζ j, and μ̂ j =μ j − iωη j are the complex Lamé parameters, λ j = ρc2l, j, and s is
the source strength [related to the volume velocity Q by s =−(ρc2l, j/iω)Q]. [1] At points r outside
the jth layer the Green’s function satisfies(

λ̂k + μ̂k
)∇∇·g+ μ̂k∇2g+ρω2g= 0, (3)

where k �= j is the index of the layer in which r lies. Boundary conditions requiring continuity of
displacement and stress are imposed at each interface. Due to symmetry the Green’s function is
a function of depth z and range R only, where R2 = x2+ y2. Therefore it may be decomposed into
its angular spectrum in the x-y plane. [1] Once the boundary conditions are satisfied (see [1] for
details) the pressure at some point r= (R, z) in layer k due to a source located at r0 = (0, z0) in
layer j may be expressed in terms of the inverse Hankel transform:

P(ω,r)=−ρkω
2
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where Ψ is the angular spectrum of the displacement potential, and the displacement potential
ψ is related to the Green’s function by g=∇ψ. The z axis components of the wavenumbers of the
longitudinal and transverse waves are
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where k2
l, j =ω2/c2l, j, kt, j =ω2/c2t, j, and
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are the longitudinal and transverse sound speeds, respectively, in the jth layer (and similarly for
the kth layer). Alternatively, the wavenumbers kl, j and kt, j may be expressed in terms of loss
factors αl, j and αt, j as

kl, j =ω
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ρ j

λ j +2μ j

(
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)
, (7)

where αl, j and αt, j are loss factors for longitudinal and transverse waves, respectively, in the jth

layer expressed in Np/wavelength. Expressing the sound speeds in this way allows
experimentally observed loss factors to be used.

The sound pressure from a pulsating cylindrical structure coincident with the z axis and
extending from z = zmin to z = zmax may be calculated by integrating Eq. (4) along the length of
the structure, i.e.,

Pcyl(ω,r)=−ρkω
2

2π

∫zmax

zmin

s̃(zsrc)dzsrc
∫∞

0
Ψ(z, z0,κl, j,κt, j,κl,k,κt,k)J0(κR)dκ, (8)

where s̃ is the source strength per unit length.

Due to linear superposition, the pressure field produced by arrays of pulsating wind turbine
towers may be modeled by simply adding the individual contributions of each tower. If the
towers are assumed to share the same source strength function s̃ then Eq. (8) must only be
evaluated once, and the total field is found simply by moving the origin to each tower location,
interpolating the pressure field onto a fixed grid, and summing, i.e.,

Parray(ω,r)=
N∑

j=1
eiφ j Pcyl(ω,r−r j), (9)

where r j = (xj, yj, z) and (xj, yj) is the location of the jth tower in the x-y plane, and φ j is the
pulsation phase of the jth tower. For incoherent pulsation φ j is a random number chosen from
some distribution and is unique to the jth tower, while for coherent pulsation the phase factor φ j
is constant.

Range-dependent propagation

While the model described in the previous section is only valid for range-independent
environments, pressure fields calculated with Eq. (8) may be coupled to a parabolic equation
code to simulate propagation over range-dependent bathymetries with depth- and
range-dependent sound speeds. [2] For these purposes a modified version of the
range-dependent acoustic model (RAM) was implemented. [3]

SIMULATIONS

We now present simulations for a cylindrical wind turbine tower with radius R0 of 1 m. We
assume that the tower is immersed in a water column of height 25 m, and is embedded 15 m
into the sediment. Measurements taken on the support structures of an operational wind farm
suggest that the radial acceleration of the tower surface a in air is roughly constant with
frequency (except at frequencies near gear box resonances) and is nominally 2 mm/s2. [4]

Due to lack of measurements of the tower acceleration in water or sediment we will assume
that the tower pulsates uniformly along its entire length with surface acceleration a0 = 2 mm/s2.
Therefore the volume velocity per unit length is i2πR0a0/ω2 and s̃(zsrc)= 2πR0ρ j c2l, ja0/ω3.
However, the portions of the tower in the water column and sediment would likely be pulsating
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with a lower amplitude relative to the portion in air, due to loading by the surrounding media.
Therefore these simulations of the pressure in the water column should be considered to be an
upper bound of what may realistically be expected.

Two types of ocean bottom will be investigated. The first is silt sediment, which has
relatively high losses. Its parameters are ρ =1700 kg/m3, cl = 1700 m/s, ct = 80z̃0.3, αl = 0.115
Np/wavelength, and αt = 0.173 Np/wavelength, where z̃ is the depth referenced from the
water-sediment interface. The second bottom type considered here is basalt which has material
properties ρ = 2700 kg/m3, cl = 5250 m/s, ct =2500 m/s, αl = 0.012 Np/wavelength and αt = 0.024
Np/wavelength. [2]

Figures 1 and 2 show the pressure (expressed in dB re 1 μPa) due to pulsations of the
portions of the tower in the water column [parts (a)], the sediment [parts (b)], and the total field
[parts (c)] for silt and basalt ocean bottoms, respectively, at a frequency of 1000 Hz. The
horizontal dashed white line shows the location of the interface between the water and the
ocean bottom at a depth of 25 m.

(A) Tower portion in water (B) Tower portion in sediment (C) Total field

FIGURE 1: Pressure field (dB re 1 μPa) with silt bottom at 1000 Hz.

(A) Tower portion in water (B) Tower portion in sediment (C) Total field

FIGURE 2: Pressure field (dB re 1 μPa) with basalt bottom at 1000 Hz.

Note that for both ocean bottom types the pressure is zero at the surface due to the pressure
release condition, and for the hard basalt bottom (Fig. 2) the pressure is higher at the interface
between the water and the sediment at z = 25 m. This is due to fact that the impedance (ρcl) of
the basalt is much greater than that of the water and the effect is absent in Fig. 1 because the
impedance of silt is much closer to that of water. Also note that the overall pressure levels are
higher with the basalt bottom, due to the lower losses.

We next show the dependence of the pressure field at a fixed depth of 12.5 m (half the water
column depth) at five logarithmically spaced frequencies between 10 and 1000 Hz to distances
up to 100 km from the pulsating tower. Figure 3(a) shows the pressure field for sediment
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composed of silt while part (b) shows the field for a basalt ocean bottom. Note that the pressure
levels for the basalt case are higher overall, especially at large ranges.

(A) Silt sediment (B) Basalt sediment

FIGURE 3: Pressure field (dB re 1 μPa) at z = 12.5 m.

Arrays of towers

Figure 4 shows the pressure field given by Eq. (9) with range at a depth of z = 12.5 m for (a)
a single turbine tower, (b) an array of 10 towers spaced 1 km apart along the x axis, (c) a 10x10
array (with the same 1 km spacing) of 100 pulsating towers. In all cases the frequency is 316
Hz. The black dots in Fig. 4 indicate the locations of the towers. The random phase variable φ j
was chosen from the uniform distribution U(0,2π). Note that as more towers are added the
pressure field does change but the maximum pressure at the center of the array remains
roughly constant.

(A) Single tower (B) 10x1 array of towers (C) 10x10 array of towers

FIGURE 4: Pressure field (dB re 1 μPa) at z = 12.5 m at a frequency of 316 Hz.

Range dependence

To illustrate propagation in range-dependent environments the sound field predicted by
Eq. (8) at a range of 55 km was coupled to a version of RAM modified to account for interaction
with a sediment bottom. [3] The parabolic equation model was then used to propagate the sound
field from a range of 55 km out to 200 km over a bathymetry which varies with range and sound
speed which varies with depth. The two sound speed profiles considered here are shown in
Fig. 5(a). The blue curve is the Munk profile, an idealized profile for a temperate ocean, [5] while
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the green curve is an idealization of a polar ocean profile. Parts (b) and (c) of Fig. 5 show the
pressure field for the two different sound speed profiles at a frequency of 1000 Hz and a silt
sediment bottom. The interface between the water and the sediment is shown by the dashed
white line.

(A) Sound speed profile (B) Pressure field in temperate ocean (C) Pressure field in polar ocean

FIGURE 5: Sound speed profiles and pressure fields (dB re 1 μPa) for propagation over a range-dependent environ-
ment at 1000 Hz.

In the case of the temperate ocean profile [Fig. 5(b)] the sound is refracted downward and
bounces off the ocean bottom repeatedly until the steep drop at a range of 120 km is reached. At
this point the sound is alternatively refracted upward and downward about the depth of
minimum sound speed (1 km). The pressure field for the polar ocean profile in part (c) is
qualitatively different. Here the sound is refracted upward and reflects from the air-water
interface. While each bounce from the ocean bottom attenuates the sound pressure significantly,
the air-water interface is modeled here as a perfect reflector and so the pressure is not reduced
with each bounce from the air-water interface.

SUMMARY

A semi-analytic Green’s function model was developed for underwater noise due to pulsating
towers supporting offshore wind turbines. Simulations of the sound radiated in the water
column by a these towers embedded in horizontally stratified layers of viscoelastic sediment
were presented. For long-range propagation over range-dependent environments the
semi-analytic model was coupled to a parabolic equation code, and simulations showing
qualitatively different results were discussed.
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