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A B S T R A C T

Geospatial modelling is extensively used to identify suitable sites for the installation of onshore wind turbines,
with the starting point being the estimate of exploitable resource. However, there are concerns that such ap-
proaches do not accurately consider the social issues surrounding such projects, resulting in large numbers of
projects subsequently being rejected at the planning permission stage. Using the location of 1721 historic wind
turbine planning applications in Great Britain, this paper explores whether the planning success of proposed
wind turbine projects can be better predicted using a range of geospatial, social and political parameters. The
results indicate that the size of the project, local demographics and the proximity to existing wind turbines are
key influences affecting planning approval. The paper demonstrates that quantitatively linking local social and
political data enhances the prediction of the planning outcome of wind turbine proposals, and highlights that
geospatial parameters are necessary but in isolation, not sufficient for assessing the suitability of potential sites.
These results also suggest that national policy is restricting the development of onshore wind energy in regions
which appear generally supportive of wind energy.

1. Introduction

Concerns over security of energy supply and carbon emissions from-
fuelled electricity generation have led to a global drive to develop re-
newable energy systems. Over $40 billion is invested annually within
the European Union, with this figure expected to exceed $60 billion by
2020 (UNEP, 2016).

While many renewable energy technologies are available, onshore
wind is one of the most established technologies and offers one of the
least-cost options for renewable energy supply. For example, the cost
projections for new onshore wind projects in Great Britain (England,
Scotland & Wales) in 2020 are projected to be between £ 47–76/MWh,
a price which competes with conventional fossil-fuel technologies
(Department for Business, 2016). This economic viability is coupled
with a high resource availability, with Great Britain and many other
European nations having a large exploitable wind resource (European
Environment Agency, 2009).

Despite the strengths of onshore wind energy, widescale deploy-
ment of the technology is restricted due to local and national consent
processes. Proposals often face local opposition, with visual impact,
noise, site access and ecological impacts frequently cited as reasons for
objection (Wolsink, 2000; Langer et al., 2016). These planning chal-
lenges are particularly evident in the United Kingdom, where 52% of

historic onshore wind projects have been refused permission or are
abandoned by the developer (DECC, 2018). As highlighted in Fig. 1, this
rate is the highest rejection rate for a renewable energy technology in
Great Britain.

Great Britain is not alone in encountering opposition to wind tur-
bine projects (Langer et al., 2016), but is perhaps unique in how policy
has been restructured to restrict it, with recent changes in legislation
severely impacting the further development of onshore wind. Until
June 2015, the planning decision for projects greater than 50MW was
controlled at a national level. This provision was removed by the Energy
Act 2016 cl 78 and Infrastructure Planning (Onshore Wind Generating
Stations) Order 2016, which provided local authorities with the final say
for all onshore wind energy projects and only allows wind turbines to
be proposed in sites which have been identified within neighbourhood
development plans. These changes have effectively provided local
communities with a veto to block the development of wind turbines
(Cowell and Devine-Wright, 2018).

In addition to alterations in planning law, there have been changes
to the financial mechanisms used to support low-carbon energy in Great
Britain. Firstly, onshore wind projects were removed from the
Renewable Obligation scheme on 1st April 2016 under the Energy Act
2016 cl 79. Further to this, onshore wind projects are prevented from
bidding in the £557 million round of Contract for Differences auctions
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scheduled for Spring 2019 (Smith, 2016). Both these financial changes
have in effect restricted on the development of onshore wind energy.

As a result of these planning and financial changes, there has been a
dramatic reduction in the development of onshore wind within Great
Britain. In June 2015, the month the changes in planning were im-
plemented, there were 133 planning applications for onshore wind, a
record high for a single month (DECC, 2018). In contrast, for the entire
year of 2017, there were only 52 planning applications made, re-
presenting only 6% of the 2015 total. This reduction in planning is
highlighted in Fig. 2.

Whilst the predicted reduction of cost in onshore wind may soon
overcome the remaining financial barriers, the planning changes cur-
rently remain as a major barrier to increased deployment. However,
there have been recent suggestions to soften the stance in planning to
allow development of projects in regions accepting of wind, most no-
tably in Scotland and Wales (Clean Growth Strategy/Outcomes of Bonn
COP23, HC 596/597). In addition, the public approval of onshore wind
in Great Britain reached a record high of 76% in April 2018
(Department for Business, 2018). This therefore highlights the need to

consider the influence of local communities within the proposals of
onshore wind projects and understand characteristics which may be
associated with project rejection.

There is an established precedent of using geospatial parameters to
assess the site suitability of onshore wind (Voivontas et al., 1998; Baban
and Parry, 2001). This paper seeks to understand if existing geospatial
modelling of onshore wind can account for the low levels of acceptance
of onshore wind in Great Britain (Fig. 1) and then tests the extent to
which existing social and demographic parameters can be used to en-
hance acceptance rate prediction for a site.

2. Background

The background covers three key sections of literature. Firstly, a
review of existing geospatial models is provided to understand how
suitable sites for onshore wind are determined. Issues relating to the
social acceptance of wind turbine are then presented to highlight the
broader social influences relating to onshore wind energy. Finally,
statistical techniques used to understand acceptance rates of wind en-
ergy projects are reviewed.

2.1. Geospatial modelling of onshore wind

To assist in the development of onshore wind energy, many geos-
patial methodologies have been produced to determine site suitability
for wind farms. Development primarily started in the late 1990s
(Voivontas et al., 1998; Baban and Parry, 2001), and established a
structure which has since been applied extensively internationally
(Hansen, 2005; Yue and Wang, 2006; Lee et al., 2009; Janke, 2010;
SQW Energy, 2010; Aydin et al., 2010; Van Haaren and Fthenakis,
2011; Sliz-Szkliniarz and Vogt, 2011; Gass et al., 2013; Neufville, 2013;
Miller and Li, 2014; Wang et al., 2014; Watson and Hudson, 2015;
Noorollahi et al., 2015; Atici et al., 2015; Baseer et al., 2017; Gigović
et al., 2017; Mentis et al., 2017; Manomaiphiboon et al., 2017; Liu
et al., 2017; Kazak et al., 2017). These methodologies combine geos-
patial modelling with Multi-criteria Decision Analysis (MCDA) techni-
ques, whereby various spatial attributes are combined into a single
scoring criteria to identify sites which are deemed suitable for devel-
opment (Malczewski, 2004). Ideal sites are typically identified as those
which have good economic viability, are not in areas where develop-
ment is prohibited and have minimal impact on local communities.
Although the parameters vary for studies, suitable sites for development
will usually be determined as: 1) having high average wind speeds; 2) not
being close to urban areas; 3) not being in protected landscapes (e.g. Na-
tional Parks); 4) not close to airports (to minimise radar interference); 5)
close to roads (for site access) and 6) close to power lines (for grid con-
nection).

Whilst models are typically based of an implicit assumption that
geospatial parameters can be used to determine suitable sites, there are
concerns that geospatial parameters in isolation are in themselves in-
sufficient to explain patterns of development of wind turbines (van der
Horst and Toke, 2010; Toke, 2005). In particular, it is argued that
modelling approaches are unable to fully capture the social barriers
surrounding the development of onshore wind energy (Langer et al.,
2016). This gap between modelling and development can be high-
lighted by Fig. 3, which shows that despite widespread interest in
modelling the site suitability of onshore wind farms in the UK, there has
been an continuing decrease in the likelihood of wind turbines re-
ceiving planning permission.

Whilst some studies compare the resulting suitability maps with
locations of operational wind turbines (Watson and Hudson, 2015;
Miller and Li, 2014; Gass et al., 2013; Van Haaren and Fthenakis, 2011;
Aydin et al., 2010), these were largely used only as a form of discussion,
and the information was not directly used to develop or revise the
models. This overlooks a valuable contribution that existing sites could
provide in understanding whether there are any spatial development

Fig. 1. Acceptance rates of renewable energy projects within the Great Britain
between 1991 and 2017. The analysis only considers technologies which have
had more than 50 planning applications.

Fig. 2. Number of turbine planning applications submitted in the United
Kingdom per month between January 2013 and December 2017.
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patterns which can be identified. In particular, Watson and Hudson
(2015) noted “operational wind farms in South Central England were
predominantly located in areas suggested to be of lower suitability”, sug-
gesting that the proposed model inaccurately assessed site suitability in
the region.

In situations where there is a large enough sample of similar his-
torical spatial decisions, an “Inverse theory” approach can be applied to
determine subjective valuation of criteria by stakeholders (Cirucci,
2014). Compared to the traditional “Forward theory” approach of
geospatial modelling (Fig. 4a), an inverse approach assesses the existing
spatial distribution of projects to determine the most influential para-
meters in determining site success (Fig. 4b). Such an approach has been
used successfully within both public health studies (Brody et al., 2002;
Mohamed et al., 2004; Yamada et al., 2009; Garcia-Ayllon, 2013) and
infrastructure location decision-making (OSWER, 2002; Cirucci et al.,
2015) to determine optimal sites for development. However, there have
been no examples identified of this approach being used within onshore
wind energy modelling.

2.2. Social acceptance of wind turbines

Traditional onshore wind GIS models focus on identifying sites
which meet technical and legislative criteria. However, there is a cru-
cial difference between what makes a site acceptable in a planning
sense, and what is acceptable to the local community. This has

prompted research to assess the factors which influence the public ac-
ceptance of onshore wind turbines (Langer et al., 2016). Although
several definitions are provided (Upham et al., 2015, p. 107), the de-
finition of social acceptance adopted within this study is:

“a favourable or positive response (including attitude, intention,
behaviour and - where appropriate - use) relating to proposed or in
situ technology or social technical system by members of a given
social unit (country or region, community or town and household,
organisation)”.

Social acceptance parameters are summarised into three groups 1):
Physical and Environmental; 2) Pyscho-social and 3) Social and
Institutional (Langer et al., 2016). Stated-preference surveys are fre-
quently used to assess the views of individuals against wind energy and
identify factors which create positive or negative perceptions of pro-
jects, with the key findings outlined below.

A concept consistently investigated within empirical research is the
“proximity hypothesis”, which states that those living closest to a wind
farm will have the most negative perceptions of it (Devine-Wright,
2005a; Warren et al., 2005). However, attempts to prove this hypoth-
esis have largely proved unsuccessful, with conflicting results. For ex-
ample, evidence from Denmark suggests no link between proximity of
residential properties to the nearest turbine and negative public per-
ceptions, with suggestions that respondents living closest (i.e. within
500m) actually had more positive perceptions in comparison with in-
dividuals living away from turbines (Krohn and Damborg, 1999). This
view was further supported by a study in Cornwall, UK, which found
that local communities with visibility of the turbines were generally
more supportive of wind turbines (Eltham et al., 2008). However,
several studies have reported the opposite relationship (Meyerhoff
et al., 2010; Ladenburg, 2008), with the studies finding that negative
perceptions increased with proximity to wind energy developments,
although these studies explored smaller sized turbines along with dif-
ferent national contexts, and therefore may capture different results.

Literature has also sought to understand the potential cumulative
effects that wind turbines have, as projects are frequently refused
planning in regions already containing wind turbines (Strachan and Lal,
2004; Jones et al., 2011; Eltham et al., 2008). However, there is limited
understanding of how neighbouring wind energy projects may alter the
likelihood of nearby wind turbine projects receiving planning, and
current research has focussed on smaller case studies (Jones et al.,
2011).

It has also been highlighted within literature that psycho-social
factors have become crucial dimensions to explain how local commu-
nities interact with, and react to, new wind farm developments (Langer
et al., 2016; Scherhaufer et al., 2017). The effects of socio-demographic
variables on individuals’ views of wind farms have also been studied
(Devine-Wright, 2005a; Warren and McFadyen, 2010), with 1) age; 2)
gender; 3) experience with wind farms and 4) use of the land found to be
slightly correlated with the attitudes towards wind power (Warren and
McFadyen, 2010).

Empirical findings also suggest that political beliefs are correlated
with social acceptance of different low carbon technologies (Devine-
Wright, 2007). The shift towards anti-onshore wind was a key mani-
festo commitment of the Conservative Party in the 2015 general elec-
tion, and previous surveys indicate that only 62% of individuals who
indicated support for the UK Conservative Party were also supportive of
new renewable energy developments, compared to 86% and 84% for
Labour and Liberal Democrats respectively (Populus, 2005).

Studies have highlighted that the interaction of developers with
local communities are also key indicators of positive planning approval
outcomes (Toke, 2005; Devine-Wright, 2005b; Wustenhagen et al.,
2007). People are generally more supportive when projects seek greater
consultation and community interaction within their plans, compared
to those which are fixed prior to consultation with the local population.

Finally, the ownership structure of a project has been indicated to be

Fig. 3. Annual average acceptance rate of wind turbine projects within Great
Britain, 1990–2017. Line shows polynomial fitted relationship.

Fig. 4. Comparison of Forward and Inverse GIS MCDA model structures.
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a significant influence on the level of public acceptance (Sonnberger
and Ruddat, 2017; Haggett and Toke, 2006). Projects are generally seen
as more favourable when owned by local energy cooperatives rather
than by a large energy company or investor with no local connections
and has been suggested as a major factor explaining the differences in
project success between the United Kingdom and Germany (Toke et al.,
2008).

2.3. Planning acceptance of wind energy projects

Whilst studies have aimed to understand the social acceptance of
onshore wind turbines at an individual level, it is more beneficial to
planners and developers to understand how these influence the overall
planning acceptance of a wind energy project. There has been increased
use of quantitative analysis to understand the effect social and institu-
tional parameters have on the outcome of wind energy planning out-
comes, with four key studies being identified (Toke, 2005; van der
Horst and Toke, 2010; van Rensburg et al., 2015; Roddis et al., 2018).
Such approaches build upon the understandings provided within the
qualitative analysis explained with Section 2.2, but aim to identify key
parameters and their influence on the chance of a turbine receiving
planning permission.

A key determinant in the statistical power of the models is the
number of planning applications used within their models. The listed
studies used samples sizes of 51 (Toke, 2005), 77 (van der Horst and
Toke, 2010) 354 (van Rensburg et al., 2015) and 1324 (Roddis et al.,
2018) wind energy projects respectively. These samples sizes influenced
the suitability of the modelling used: where a small sample size was
used, the analysis used univariate analysis to assess the influence of
each parameter individually, with logistic regression being used to as-
sess each independent variable individually (Toke, 2005; van der Horst
and Toke, 2010). Where larger sample sizes are available multiple re-
gression model approaches were used, with probit (van Rensburg et al.,
2015) and logistic regression (Roddis et al., 2018) methods being ap-
plied.

The studies explored the influence of social, demographic, political
and institutional parameters identified within the previous qualitative
analysis, although the scope of these parameters included varied be-
tween studies. Toke (2005) assessed how planning outcomes were in-
fluenced by the views of key actors within the planning process of wind
energy, including local councils, planning authorities and landscape
protection groups. van der Horst and Toke (2010) focussed on local
characteristics relating to education, health, demography, employment.
van Rensburg et al. (2015) assessed project technology, institutional
processes and site endowment parameters. Finally, Roddis et al. (2018)
developed a similar model as previously developed by the authors
(Harper et al., 2017), using 26 parameters including technical, aesthetic
and local characteristics, but with a focus on community acceptance of
projects instead of planning approval.

Several key influential parameters were identified across different
parameter groups. For socio-demographics, it was shown that planning
acceptance rates were closely associated with the high levels of ap-
prehension about such schemes amongst people living in the immediate
vicinity, highlighting the importance that social influences have on
planning acceptance (Toke, 2005). Several strong associations were
identified for planning refusal, including 1) voter turnout and 2) years of
potential life lost (a measure of premature mortality). It was also noted
that wind energy appears to generally be more likely to receive plan-
ning permission in deprived areas, with developers “keen to avoid re-
latively privileged communities and target areas where people are thought to
less likely put up a fight” (van der Horst and Toke, 2010, p.220).

van Rensburg et al. (2015) indicated that 1) proximity to Natura
2000 sites (a protected landscape under the European Union); 2) sites
with high bird sensitivity; 3) hub height and 4) project capacity were key
indicators to project success. In addition, the study noted that proximity
of the nearest dwellings and wind speeds appeared insignificant, which

is counter to the view reported within many geospatial models which
aim to locate wind turbines distant to towns and cities.

Roddis et al. (2018) reported 8 parameters as being significant in
influencing the planning acceptance of projects. These include the 1)
proximity to National Parks; 2) Project Size and 3) Social deprivation. In-
terestingly, the study reports contrasting results to previous research
(van der Horst and Toke, 2010), with it being reported that areas of low
deprivation appeared more likely to be accepting of onshore wind en-
ergy projects.

The studies by van Rensburg et al. (2015) and Roddis et al. (2018)
attempted to produce an overall statistical model to predict the like-
lihood of a wind turbine receiving planning acceptance. Of the vari-
ables included within these models provided an adjusted R2 value of
0.31 and 0.26 respectively.

2.4. Developing integrated site suitability assessment models

Given the prevalence of GIS modelling in determining suitable sites,
and the relatively high level of rejection of projects within the UK, it is
argued that there a need to understand how geospatial parameters in-
fluence the acceptance rates of projects. The studies referenced in
Section 2.1 have suggested a relationship between local demographic
and social attributes and wind turbine planning acceptance rates, yet
none attempted to integrate these findings into their site suitability
tools beyond the use of proximity buffers around urban areas. This
omission means that social dimensions have generally not been factored
in to assessments of the suitability of sites for onshore wind develop-
ment.

Responding to calls to combine qualitative and quantitative re-
search (Langer et al., 2016, p.256), this paper presents analysis which
assesses parameters that influence wind turbine planning outcomes,
utilising a range of physical, geographical, demographic and political
parameters. Building upon the existing quantitative studies (Toke,
2005; van der Horst and Toke, 2010; van Rensburg et al., 2015; Roddis
et al., 2018), the work reported extends current knowledge through the
use of a larger number of site consent applications (n= 1721) and a
broader range of geospatial parameters than has previously been the
case.

3. Material and methods

The overall methodology is highlighted in Fig. 5, with a detailed
explanation provided in the following subsections. This approach ex-
pands upon the methodology previously developed by the authors
(Harper et al., 2017; Harper, 2018). The analysis and report was written
using the R programming language (R Core Team, 2018) and R Mark-
down (Allaire et al., 2018), with the full statistical analysis and turbine
dataset provided with the supporting files to allow for the results of a
the analysis to be reproduced.

3.1. Study scope

The study was conducted across Great Britain (England, Scotland &
Wales). These regions were chosen due to the broadly similar cate-
gorisation of land types, nature designation, data availability and leg-
islation across these regions (HM Government, 2014). The Shetland
Islands were excluded from the analysis as their geographic isolation
and distance from mainland Britain created issues in generalising the
model results.

3.1.1. Wind turbines dataset
Information for turbine planning applications was collected through

the Renewable Energy Planning Database (REPD) (DECC, 2018). Al-
though planning applications detail are available until March 2018,
projects were only considered up until December 2015; the time at
which the recent financial and planning changes were made. Detailed
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information for each planning application includes 1) location; 2) year
of application; 3) number of turbines; 4) turbine capacity and 5) planning
decision.

The database includes detailed planning information with the
planning status. To simplify the use within the statistical modelling, this
status was summarised into a dichotomous variable with the variables:
1) Approved (Application Granted/Under Construction/Appeal
Granted/Operational/Decommission) and 2) Refused/Abandoned
(Application Refused/Appeal Withdrawn/Abandoned). The spatial
distribution of these two groups of sites is shown in Fig. 6.

3.1.2. Model layers data
Building upon the literature review in Section 2, data sources were

identified for physical, environmental and social parameters at each
turbine location which had been indicated to influence wind turbine
planning applications. A summary of the variables is provided in

Table 1 and discussed below, with a full details provided within the
Technical Appendix A. Of the most comparable work (Roddis et al.,
2018), this study used a total of 30 parameters, 11 of which were
common to both studies. These layers were categorised as follows:

• Wind Resource: wind speeds were taken from the Numerical
Objective Analysis of Boundary Layer (NOABL) wind speed data-
base. This provides estimated annualised wind speed at 45m ele-
vation at a resolution of 1 km grid (DTI, 2001).

• Landscape Features: Physical features including roads, railways
and urban areas were collected from OS Strategi (Ordnance Survey,
2016). The electricity transmission network, military sites and air-
port locations (civil and military) were extracted from Open Street
Maps (OSM) (OSM, 2016).

• Landscape and Nature: Landscape and nature designations were
collected for regions within Great Britain (Pope, 2017).

• Geographic: Site elevation data was collected at a 25m resolution
(European Commission, 2015). This was used to calculate the gra-
dient using the Fleming and Hoffer algorithm (Fleming and Hoffer,
1979).

• Demographic: Census data was collected at the Lower Super Output
Area (LSOA) and Data Zone (Scotland) for each turbine location.
LSOAs and Data Zones represent regions with a population between
1000 and 3000 people (Office for National Statistics, 2016).

• Political: Political data was collected at the local authority level for
the four largest parties in Great Britain: 1) Conservatives; 2) Labour,
3) Liberal Democrat and 4) Scottish National Party (SNP) between
1990 and 2016. These parties held a sum of 95% of council seats
within Great Britain as of 2016.

• Cumulative local turbines: the nearest wind turbine to the project

Fig. 5. Research methodology to analyse patterns in onshore wind acceptance
rates.

Fig. 6. Location of onshore wind energy planning applications used within the
study. Location data extracted from the Renewable Energy Planning Database
(REPD).
(DECC, 2018)

Table 1
Parameters considered within model.

Category Variable

Turbine Wind Turbine Planning Data
Turbine Capacity
Number of Turbines
Year
Country

Resource Wind Speed
Features Airports

Roadsa

Railways
Urban Areas
HV Powerlinesb

Military Sites
Landscape Areas of Outstanding Natural Beauty

National Parks
Heritage Coast

Nature Special Protection Areas
National Nature Reserve
Sites of Special Scientific Interest
Special Areas of Conservation

Geographic Elevation
Slope

Census Level of Qualificationc

Age
Social Graded

Tenure
Political Conservatives

Labour
Liberal Democrat

Proximity Nearest Turbine (Operational)
Nearest Turbine (Rejected)

a Roads are broken into four main categories: Motorways, A Roads, B
Roads and Minor Roads.

b High Voltage network from 132 kV to 400 kV.
c L4 represents degree level or above.
d AB represents Higher and intermediate managerial, administrative,

professional occupation.
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was calculated using the location and year of planning application
for each turbine.

Guidance states that the location of wind turbines should consider
sensitive birds and migratory flight paths (Gove et al., 2013). Although
maps are available for parts of the study region (Bright et al., 2006), it
was not possible to collect bird sensitivity maps for the whole study
region. It was therefore decided to not include this data within the
statistical model. However, as proposed projects are required to con-
duct an Environmental Impact Assessment, sites which are found to
impact birds will often be abandoned before planning permission is
sought, and therefore it is argued that such impacts should not influ-
ence the planning outcome.

3.2. Data transformations

The data sources came as raster and vector spatial features, which
were aggregated at each of the turbine locations as follows:

• Points, lines and polygons: A spatial join was completed to find
the distance to the nearest feature for each turbine. For polygon
based data source, a value of 0 km denotes the turbine is within the
feature. Left censoring was used to limit the maximum distance of
geospatial relationships to 30 km, which is recommended within
literature as the maximum typical distance at which the visual in-
terference of wind turbines should be considered (SNH, 2009).

• Tabular: corresponding political and census boundaries were used
to map the tabular data, and turbines assigned the value of the re-
gion. In addition, political data was filtered to the year of the
planning application to determine the political balance at the time
of planning.

• Raster: The raster value at the site location was extracted.

In comparison to previous research (van Rensburg et al., 2015), no
transformations were made to the standardise the dataset. Transfor-
mation provides no direct benefit to the model other than to allow a
direct comparison to be made between the influence of parameters. In
addition, transformed model parameters create additional complica-
tions in the generalising of model results as the model layers must be
transformed to the adjusted layers (Harrell, 2001, p. 123).

3.3. Statistical modelling

A multiple logistic regression analysis was conducted to model the
factors associated with a positive planning outcome of wind turbine
applications using the predictor variables listed in Table 1. This model
extends the approaches developed within previous studies (Toke, 2005;
van Rensburg et al., 2015; Roddis et al., 2018). A hierarchical approach
was applied to the model whereby parameters are added to the model
sequentially based on the presumed importance of parameters. These
were selected as follows:

1. Aspatial site attributes: variables including Number of Turbines and
Installed Capacity.

2. Economic considerations: parameters which influence the cost
effectiveness of the site, including Wind Speed and Proximity to the
National Grid.

3. Temporal: the year in which the planning application was made to
account for potential policy changes.

4. Proximity to features: proximity to geographic features, Landscape
and Nature Designations

5. Social attributes: Demographic attributes for the area of the wind
energy project

6. Political attributes: the political composition of the local authority
at the time of the planning application.

7. Spatial proximity to other turbines: the proximity to the nearest
wind energy project.

For each additional set of parameters added to the model, diagnostic
checks were made to ensure that the assumptions of logistic regression
were maintained. Each parameter was checked for linearity of the logit
for independent variables, absence of multicollinearity and in-
dependence of variables (Harrell, 2001). Any parameters which vio-
lated these conditions were removed from the model. The overall fit of
the model was assessed using Pearson chi-squared, Psuedo R2 values
and the residual deviance. Internal validation was used to assess the
predictive accuracy of the model, with a random sample of 5% fold size
randomly selected and iterated 200 times. Once all parameters had
been included within the model, a parsimonious model was produced to
remove non-influential parameters, with the Akaike Information Cri-
terion (AIC) used to determine the best fitting model. The full statistical
analysis is provided as an additional appendix.

Regional differences in parameter effects between England,
Scotland and Wales were hypothesised due to differing population
densities (England: 413/km2, Wales: 149/km2, Scotland: 68/km2)
(ONS, 2013) as well as differing institutional support, with Scotland in
particular placing a greater emphasis on the development of onshore
wind (DECC, 2018). Where significant variation is expected within
subgroups, split data models are recommended, whereby the dataset is
segmented into groups based on model variables, and regression models
are fitted to each subgroup (Stoltzfus, 2011). Whilst these differences
can be explored using a dummy variable, such an approach only cap-
tures the level effect and not the slope effect, and therefore only allows
for limited variability between the subgroups. The work reported here
therefore created separate logistic regression models for each country
(England, Scotland, Wales). The parameters used to construct these
models used two approaches. Firstly, the parameters from the parsi-
monious model were used across all three models (“Global Parameter”).
Secondly, the parameters were independently iterated within each of
the three group models to identify the best-fitting set for each country
(“Optimised Parameters”).

3.4. Generalisation

A model which can predict site suitability for existing sites does not
contribute to the assessment of future sites. Thus, in order to generalise
the model results to all areas of Great Britain and therefore allow the
model-based assessment of potential suitability, a spatial regression
model was produced to generalise the results to all areas. This used the
three-country parsimonious regression models to predict sites nation-
ally at a 500m grid resolution. This model contained 13 variables, two
of which were non-spatial parameters: 1) Turbine Capacity and 2) Year.
To include these within the prediction, fixed values were assumed, and
predictions made for the year 2017 with a turbine size of 2MW (the
average model size for the given year (DECC, 2018)).

4. Results

The overall results for each stage of the hierarchical model are
presented in Table 2. It can be seen that there is a improvement of the
Nagelkirke R2 values across the results from 0.014 (Model 1) to 0.206
(Model 7), and similarly the predictive accuracy of the model improves
as more parameters are included. The final model (Model 7) reports a
Hosmer-Lemeshow p-value of 0.032, which validates the null hypoth-
esis for this model.

Table 3 provides the results from the final hierarchical regression
model (Model 7). Statistically significant positive trends (e.g. increase
in the parameter increases success rates) were observed for 1) Turbine
Capacity; 2) Distance to Urban Regions; 3) Distance to Areas of Outstanding
Natural Beauty (AONB) 4) Distance to National Parks and 5) Distance to
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Nearest Turbine (Rejected). Negative associations were found for 1) Year;
2) Distance to Ramsar sites; 3) Distance to Natura 2000 sites; 4) Qualifi-
cations L4 (University degree or above); 5) Mean Age and 6) Nearest
Turbine (Operational).

The total number of parameters retained in the parsimonious model
was reduced from 30 to 15. This resulted in a marginal penalty in
performance of the model, with the R2 values reducing from 0.2 to
0.193. The odds ratios (OR) for these remaining parameters are shown
for each parameter in Fig. 7, whereby an OR equal to 1 means the
parameter does not affect odds of the planning outcome, OR greater
than 1 indicates the parameters positively influence planning accep-
tance, OR less than 1 represents a negative parameter influence.

The results of the nationally-segmented models are summarised in
Table 4, comparing the Global Parameters against Optimised Parameters.
There has been a general increase in the fit of the models represented by
the Nagelkirke R2 values. The difference between Odds Ratios between
each model is further highlighted in Table 5 for the Global Parameters.

Finally, the results of the statistical generalisation are presented in
Fig. 8, with sites being scored (0–100%) based on the predicted chance
of project proposal. The average acceptance value of the model is

Table 2
A summary of the hierarchical logistic regression models.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Observations 1715 1715 1715 1715 1715 1715 1715
Parameters 3 5 6 22 25 28 31
Deviance 2351 2346 2248 2164 2131 2127 2082
R.n 0.014 0.018 0.091 0.151 0.173 0.176 0.206
Chi Square 19 24 121 205 238 242 287
Degrees of Freedom 2 4 5 21 24 27 30
p 9e-05 1e-04 0.000 0.000 0.000 0.000 0.000
Residual Deviance 1712 1710 1709 1693 1690 1687 1684
AIC 2357 2356 2260 2208 2181 2183 2144
Accuracy 52.7% 53.5% 61.7% 64.3% 64.2% 64.5% 65.3%

Table 3
Odds Table for Logistic Regression Parameters.

Variable Estimate Std. Error z value Pr Sig. Odds Ratio OR 2.5% CI OR 97.5% CI

Number of Turbines 0.002 0.006 0.406 0.685 1.002 0.991 1.014
Turbine Capacity MW 0.371 0.068 5.496 0.000 *** 1.450 1.271 1.657
Wind Speed − 0.091 0.063 −1.448 0.148 0.913 0.807 1.033
Distance to HV Powerlines 0.002 0.009 0.244 0.807 1.002 0.985 1.021
Year − 0.119 0.014 −8.517 0.000 *** 0.888 0.863 0.912
Distance to Airports 0.008 0.004 2.067 0.039 * 1.008 1.000 1.015
Distance to A Roads 0.003 0.013 0.247 0.805 1.003 0.979 1.028
Distance to B Roads − 0.033 0.019 −1.717 0.086 . 0.968 0.932 1.005
Distance to Minor Roads 0.050 0.071 0.702 0.482 1.051 0.915 1.207
Distance to Motorways 0.000 0.007 0.014 0.989 1.000 0.987 1.014
Distance to Railways 0.013 0.009 1.431 0.152 1.013 0.995 1.031
Distance to Urban Region 0.169 0.065 2.585 0.010 ** 1.184 1.042 1.347
Distance to AONB 0.017 0.006 2.807 0.005 ** 1.017 1.005 1.029
Distance to National Park 0.030 0.007 4.506 0.000 *** 1.030 1.017 1.044
Distance to Heritage Coast − 0.010 0.009 −1.183 0.237 0.990 0.973 1.007
Distance to NNR −0.004 0.007 −0.564 0.573 0.996 0.982 1.010
Distance to Ramsar 0.014 0.007 2.146 0.032 * 1.015 1.001 1.028
Distance to SACS 0.004 0.010 0.438 0.661 1.004 0.985 1.023
Distance to Natura 2000 −0.019 0.008 −2.306 0.021 * 0.981 0.965 0.997
Distance to SSSI 0.040 0.025 1.601 0.109 1.041 0.991 1.094
Distance to Military Sites 0.001 0.008 0.084 0.933 1.001 0.985 1.016
Qualifications, L4 − 0.032 0.007 −4.596 0.000 *** 0.968 0.955 0.981
Mean Age − 0.041 0.017 −2.367 0.018 * 0.960 0.928 0.993
Home Ownership 0.000 0.000 0.542 0.588 1.000 0.999 1.001
Political, Conservative Share − 0.001 0.003 −0.305 0.760 0.999 0.992 1.006
Political, Labour Share 0.005 0.004 1.279 0.201 1.005 0.997 1.013
Political, Liberal Democrat 0.003 0.005 0.694 0.488 1.003 0.994 1.013
Nearest Turbine (Operational) − 0.017 0.004 −4.238 0.000 *** 0.983 0.975 0.991
Nearest Turbine (Rejected) 0.021 0.003 6.339 0.000 *** 1.021 1.015 1.028
Distance to Large Urban Areas − 0.004 0.013 −0.316 0.752 0.996 0.971 1.022

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1’’ 1.

Fig. 7. Odds Plot for Parsimonious Logistic Regression Model.
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21.9%. Only 1.80% of sites were predicted to have a greater than 50%
chance of success, and 10.9% of sites were predicted to have an ac-
ceptance rate of less than 10%.

5. Discussion

5.1. Significant parameters

For project characteristics, the size of the turbine capacity is a sig-
nificant parameter, with larger turbines increasing the chance of ac-
ceptance (note that this refers to the size of each individual turbine, not
the overall capacity of the project). This at first appears counter in-
tuitive, as it may be expected that smaller turbines cause a lower visual
impact and are therefore less opposed. However, there are two options
which are considered. Firstly, this result may suggest that the devel-
opers of larger turbines are more likely to appeal the decisions made
against their projects, as rejection of such projects would result in a
large loss of potential revenue. Secondly, there is evidence of correla-
tion between turbine size and project (r= 0.35), and that larger tur-
bines are more likely to be in projects of over 50MW which were
previously influenced under the nationally significant infrastructure,
with such planning decisions potentially being more favourable for
projects as they reduce the local influence on projects. However, it
should be noted that this variable has a small standard deviation
(sd=1.0) compared to other variables included within this model, and
therefore the non-standardised odds ratio inflates the perceived influ-
ence of this variable.

The distance to urban areas was indicated to be statistically

significant, with sites further away from urban areas appearing more
socially acceptable, although there is considerable uncertainty as in-
dicated by the confidence interval. This supports the use of this
“classic” parameter within existing geospatial models. There are a
number of potential causes for this: firstly, it could indicate that high
wind speed sites suitable for development tend to be naturally less
populated (i.e. hilly, isolated regions). Additionally, it may reflect a so-
called “Not in My Back Yard” (NIMBY) view from the vocal local po-
pulation, with projects in closer proximity to urban areas being more
likely to be rejected. This has been a relatively contentious subject

Table 4
Comparison of subset Logistic Regression Models based on the global parameters list.

Global Parameter Optimised Parameters

Global England Scotland Wales England Scotland Wales

Observations 1715 772 787 156 772 787 156
Parameters 16 16 16 16 10 13 9
Deviance 2094 927 940 176 932 943 180
R.n 0.198 0.209 0.232 0.302 0.202 0.228 0.275
Chi Square 275 131 150 40 126 148 36
Degrees of Freedom 15 15 15 15 9 12 8
p 0.000 0.000 0.000 0.00045 0.000 0.000 2e-05
Residual Deviance 1699 756 771 140 762 774 147
Accuracy 66.6% 66.3% 67.4% 60.3% 67.5% 67.2% 63.6%

Table 5
Odds ratios and significance for segmented regression models.

England Scotland Wales

Variable OR OR OR

Turbine Capacity MW 1.428 *** 1.562 *** 1.654 *
Year 0.882 *** 0.859 *** 0.919 *
Distance to B Roads 0.962 0.961 . 0.933
Distance to Railways 0.987 1.027 ** 1.001
Distance to Urban Region 1.181 1.240 *** 1.158
Distance to AONB 1.009 1.029 ** 1.083 **
Distance to National Park 1.032 *** 1.036 ** 1.073 **
Distance to Ramsar 1.012 1.030 *** 0.948
Distance to Natura 2000 0.986 0.970 * 0.916 **
Distance to SSSI 1.016 1.020 1.840 ***
Qualifications, L4 0.969 *** 0.964 ** 0.984
Mean Age 0.978 0.969 0.836 .
Political, Labour Share 1.005 0.996 1.014
Nearest Turbine (Operational) 0.979 *** 0.987 * 0.991
Nearest Turbine (Rejected) 1.024 *** 1.019 *** 1.012

Signif. codes: 0 ‘***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1.

Fig. 8. The generalised statistical model and predicted site acceptance for
England, Scotland and Wales.
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within literature, with a range of studies supporting (Haggett and Toke,
2006; Jones and Richard Eiser, 2010) and rejecting (van Rensburg
et al., 2015; Devine-Wright, 2005b; Populus, 2005) the NIMBY argu-
ment. However this study provides quantitative evidence to suggest
that sites closer to urban areas have a lower chance of acceptance.

For landscape and environmental designations, distance to National
Parks, Ramsar and AONB were indicated as significant parameters,
again with sites being further away being suggested as more acceptable,
although these parameters have marginal impacts. This potentially re-
flects the negative visual impacts which are often cited as a major im-
pact of wind energy developments (Langer et al., 2016; Jones and
Richard Eiser, 2010). However, it should be noted that these influences
have a relatively low impact, despite literature indicating that land-
scape designations would play a more important role (Langer et al.,
2016).

The level of qualifications, and the mean age of the local population
have been retained as significant parameters for demographic variables.
Thus, the higher the proportion of people with higher qualifications and
the higher the local mean age, the less likely projects are to be ap-
proved. This novel result suggests that regions of higher education may
be more effective in organising campaign groups against such projects
and supports the hypothesis developed by van der Horst and Toke
(2010) that developers are likely to avoid more privileged areas. Con-
versely, there are no statistically significant effects for share of local
councillors by political party, which suggests that individual political
beliefs do not influence the planning outcome of wind energy projects.

The analysis suggests that proximity to existing wind energy de-
velopments may influence the likelihood of projects receiving planning.
The nearest operational wind energy project was indicated as having a
statistically significant effect, indicating that projects further away from
an existing project are less likely to be accepted. In addition, the nearest
rejected project is suggested to be have a positive effect, inferring that
the further the site is from a previously rejected project, the higher the
chance of acceptance. This “proximity hypothesis” has been a con-
tentious subject challenged within literature (Meyerhoff et al., 2010;
Ladenburg, 2008; Eltham et al., 2008) and this study provides quanti-
tative evidence to challenge this previous research.

There are notable parameters which are frequently used in GIS
modelling, but do not prove influential, including wind speed and the
proximity to airports. This may reflect that these parameters represent
technical challenges which can be investigated in the early stages of
project development, and therefore any sites that are not suitable will
not progress to seek planning permission.

It is interesting to note that despite including similar methodology
as the study by Roddis et al. (2018), there was limited overlap with the
parameters used, with only 11 of the 30 parameters used in this study
being shared between the two studies. Of these parameters, supporting
relationships were found between three of these variables 1) Distance to
National Parks 2) Turbine Capacity and 3) Year of planning application.
However, as the statistical model is not provided with the paper, it is
not possible to further assess the difference in greater detail, although
there appear to be opportunities to integrate the two methodologies
proposed.

5.2. Model fit

The overall model fit of parameters is comparatively low based on
geospatial parameters alone, with the global parsimonious model
achieving a fit of 0.2. In comparison, the studies by van Rensburg et al.
(2015) and Roddis et al. (2018) achieved an overall adjusted R2 value
of 0.31 and 0.26 respectively. Although fewer geospatial parameters
were included within these studies, they integrated greater number of
institutional details and planning details, which suggests that details of
the planning process are a more important indicator of site success than

the spatial parameters alone.

5.3. National models

The split data model developed suggests that despite hypothesised
differences between the three nations, there is limited variation be-
tween the significant influential parameters. OnlyWind Speed exhibited
variations in the positive and negative relationships, with the model
suggesting that sites in England have a greater chance of acceptance at
sites of higher windspeed whilst Wales and Scotland reporting the op-
posite. However, the reduced number of observations used to build
each model increases the uncertainty substantially as indicated by the
greater confidence intervals.

5.4. Generalisation

The national prediction plot (Fig. 8) shows the estimated probability
of success of wind turbines within Great Britain. The results demon-
strate that there are large regional variations within wind energy site
acceptability. For example, large regions in Scotland appear suitable for
development, while many other regions and especially the South of
England appear “off limits” to development, particularly the regions
along the South Coast of Great Britain.

For the overall model, there is a low average predicted acceptance
rate of 21.9% which is below the rate of acceptance of wind energy in
Great Britain, which was 40% in 2017 (DECC, 2018). However, it
would be expected that the model would return a lower average, as
sites which are selected by developers will pass through several pre-
selection criteria prior to planning permission (Smith, 2016). Therefore,
sites which are generally opposed before planning will often be aban-
doned before being taken to planning permission.

The analysis results suggest that there is no “one-size-fits-all” ap-
proach for spatial modelling, and that there are large regional varia-
tions in the development of wind energy projects beyond the avail-
ability of the resource. In comparison, the regional renewable energy
studies conducted within Great Britain in 2010 broadly followed a
consistent methodology to assess the resource potential, with small
differences in the development rules in particular with regard to en-
vironmental and landscape designations (Stoddart and Turley, 2017).
In recent years, government policy has shifted away from such top-
down, standardised planning, and it is therefore important that geos-
patial modelling aims to integrate local context to more accurately
capture this variation.

Surprisingly, the model suggests that the South West of England has
a low likelihood of acceptance, despite having high levels of wind en-
ergy within the area. Great Britain's wind energy development largely
started in the region, so it had generally been considered supportive of
wind energy (Eltham et al., 2008). Upon inspection, it can be noted that
this low level of acceptability is caused by the large number of wind
turbines and planning applications within the area, regional demo-
graphics (high mean age) and proximity to protected landscapes.

Although the model makes spatial predictions for 2017, there are
difficulties forecasting beyond 2015 due to the changes within the
planning system explained within Section 1. These changes granted
greater control of onshore wind energy developments to local com-
munities, which has effectively allowed local communities to block any
wind energy developments. As the methodology does not explicitly
model planning constraints, it is not possible to assess this shift in po-
tential acceptance this has caused. However, there are suggestions that
the planning system may be reduce the difficulty in constructing pro-
jects, and such a model may be able to more accurately assess these
changes. Therefore, the model results of this work can provide a clear
starting point for assessment of onshore UK wind if and when local
constraints are revised.
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6. Conclusions and policy recommendations

This paper has investigated the influence of geospatial, environ-
mental, demographic and political attributes on the probability of wind
farm planning approval in Great Britain between 1990 and 2015. The
study findings reveal that local demographic parameters are associated
with the planning outcomes of projects, and that many of the geospatial
parameters typically integrated into wind turbine models appear in-
significant in determining site approval.

The results raise concerns of the value of existing geospatial mod-
elling in assessing suitable locations for wind energy sites. These find-
ings provide evidence to support existing literature that such geospatial
tools in themselves are of limited applicability (Toke, 2005;
Malczewski, 2004), and supports the conclusion that greater emphasis
needs to be given to the non-physical elements of a project, such as local
population attributes and potential community engagement with the
scheme from an early stage (Toke et al., 2008; Wolsink, 2000; Warren
and McFadyen, 2010; Roddis et al., 2018). Other countries, most no-
tably Germany, place a much greater importance on ownership struc-
tures of projects suggesting that locally owned projects may also be a
much more important factor than the geospatial parameters sur-
rounding a site (Warren and McFadyen, 2010). These findings therefore
suggest that if a wind power developer can address the oppositions from
local residency, geospatial conditions will have less influence to social
acceptance.

Although the models have a relatively low overall fit, they are
consistent with previous research (Roddis et al., 2018; van Rensburg
et al., 2015), and there is value in the generalisation of statistical model
and resulting map of onshore wind energy site suitability (Fig. 8). With
the estimated cost of planning applications for commercial scale pro-
jects exceeding £50,000 (Renewables First, 2016), even marginal im-
provements in the site selection process using these results could offer
substantial cost and risk reduction. This therefore allows a developer to
filter out areas which have positive geo-spatial conditions but more
challenging social acceptance conditions. This is the impact the study
aims to bring to the sector.

The findings from this model can help inform regional level energy
strategy by providing Local Authorities with the tools to understand
where and why developers may target turbine sites and the relative
importance of local physical, environmental and social attributes. Since
the modelling approach is repeatable it would also be possible to repeat
the model with additional locally relevant attributes and/or renewed
local demographic attributes to take account of local social change. The
results may also bring to the fore the possibility of an unintended fo-
cusing of development on relatively disadvantaged areas through de-
veloper targeting and/or local political decision-making processes.

The model raises important system implications within the UK's
electricity network. While there are specific regions which appear more
accepting of onshore wind, it may not be ideal for wind turbine de-
velopments to be concentrated within these small areas. Such con-
centration of wind development into small areas can result in grid
constraints and require additional capacity installed (Alexander et al.,
2014) For example, Dumfries and Galloway already suffers from major
curtailment issues due to lack of available grid capacity but is marked in
places as a likely site (DECC, 2016). In addition, focussing renewable
energy resources into smaller regions can reduce the security of supply

of resources, as there is less geographically dispersed variation in the
resource (Engeland et al., 2017). The results of this analysis therefore
require further detailed mapping for it to be used as a decision-making
tool.

The generalised model results highlight that there is large regional
variation within the site acceptability of onshore wind within Great
Britain. Regions of Scotland, England and Wales are suggested to be
more accepting of onshore wind projects, while there are large regions
of low acceptance notably the south-coast of England. Existing geos-
patial modelling should integrate local understanding if they are to
provide realistic estimates of wind turbine sites, a finding which sup-
ports existing literature (Langer et al., 2016; Roddis et al., 2018), as
“traditional” GIS which focusses on technical parameters may not cap-
ture the variation of sites between regions.

As shown within the literature, studies have been conducted inter-
nationally and have often reported conflicting issues surrounding the
social acceptance of projects (Scherhaufer et al., 2017; Warren and
McFadyen, 2010). As such, the results of this study may therefore be
specific to Great Britain. It is recommended that international com-
parison is conducted using similar methods to provide further insight
into this potential national variation.

Great Britain provides an interesting international example in re-
newable energy development, as energy policy has shifted towards a
more hostile stance against onshore wind energy since 2015. In parti-
cular, the approval of planning has been granted to local communities,
and it appears that certain demographics are less accepting of onshore
wind in Great Britain. However, there are indications that legislation
may be altered to make wind turbine developments permitted in areas
which are generally supportive (Clean Growth Strategy/Outcomes of
Bonn COP23, HC596/597). The generalised map (Fig. 8) highlights that
from a planning approval rate, there are regions in the England and
Wales which still appear accepting of wind. As existing policy has ef-
fectively stalled onshore wind within the country with the uninten-
tional consequence to completely block development, the results sug-
gest that there would be opportunities for future growth in onshore
wind energy development in Great Britain.
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Table A1
Summary of data sources used within model.

ID Category Variable Source Data Type Variable Value Value Type Unit

1 Turbine Wind Turbine Planning Data REPD (DECC, 2016) Tabular Planning Outcome Categorical Accept/Reject
2 Turbine Capacity Tabular Megawatts/turbine Continuous MW
3 Number of Turbines Tabular Continuous
4 Year Tabular Discrete
5 Country Tabular Categorical
6 Resource Wind Speed NOABL (DTI, 2001) Raster Annualised Wind Speed Continuous ms-1

7 Features Airports OpenGeo (OpenGeo, 2017) Points Distance to Feature Continuous km
8 Roadsa OS Strategi (Ordnance Survey, 2016) Lines Distance to Feature Continuous km
9 Railways Lines Distance to Feature Continuous km

10 Urban Areas Polygons Distance to Feature Continuous km
11 HV Powerlinesb Open Street Maps (OSM, 2016) Lines Distance to Feature Continuous km
12 Military Sites Points, Polygons Distance to Feature Continuous km
13 Landscape Areas of Outstanding Natural Beauty (Pope, 2017) Polygons Distance to Feature Continuous km
14 National Parks Polygons Distance to Feature Continuous km
15 Heritage Coast Polygons Distance to Feature Continuous km
16 Nature Special Protection Areas Polygons Distance to Feature Continuous km
17 National Nature Reserve Polygons Distance to Feature Continuous km
18 Sites of Special Scientific Interest Polygons Distance to Feature Continuous km
19 Special Areas of Conservation Polygons Distance to Feature Continuous km
20 Geographic Elevation EU DEM (European Commission, 2015) Raster Height above sea level Integer m
21 Slope Derived from 20 Raster Gradient Continuous %
22 Census Level of Qualificationc Office for National Statistics (ONS,

2016)
Tabular Higher than L4 Continuous %

23 Age Tabular Mean Continuous Years
24 Social Graded Tabular Social Grade AB Continuous %
25 Tenure Tabular Home Ownership Continuous %
26 Political Conservatives, Share of Local Council

Seats
(Populus, 2017) Tabular Percentage of Council Continuous %

27 Labour Tabular Percentage of Council Continuous %
28 Liberal Democrat Tabular Percentage of Council Continuous %
29 Proximity Nearest Turbine (Operational) Caclulated from REPD locations Points Distance to Turbine Continuous km
30 Nearest Turbine (Rejected) Calculated from REPD locations Points Distance to Turbine Continuous km
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