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Abstract

Wind farms can have two broad potential adverse effects on birds via antagonistic pro-

cesses: displacement from the vicinity of turbines (avoidance), or death through collision

with rotating turbine blades. These effects may not be mutually exclusive. Using detailed

data from 99 turbines at two wind farms in central Scotland and thousands of GPS-telemetry

data from dispersing golden eagles, we tested three hypotheses. Before-and-after-opera-

tion analyses supported the hypothesis of avoidance: displacement was reduced at turbine

locations in more preferred habitat and with more preferred habitat nearby. After-operation

analyses (i.e. from the period when turbines were operational) showed that at higher wind

speeds and in highly preferred habitat eagles were less wary of turbines with motionless

blades: rejecting our second hypothesis. Our third hypothesis was supported, since at

higher wind speeds eagles flew closer to operational turbines; especially–once more–tur-

bines in more preferred habitat. After operation, eagles effectively abandoned inner turbine

locations, and flight line records close to rotor blades were rare. While our study indicated

that whole-wind farm functional habitat loss through avoidance was the substantial adverse

impact, we make recommendations on future wind farm design to minimise collision risk fur-

ther. These largely entail developers avoiding outer turbine locations which are in and sur-

rounded by swathes of preferred habitat. Our study illustrates the insights which detailed

case studies of large raptors at wind farms can bring and emphasises that the balance

between avoidance and collision can have several influences.

Introduction

Adverse effects of wind farms on birds largely compromise two antagonistic processes which

may not be mutually exclusive [1]: displacement from turbines or wind farms through
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‘disturbance’ or ‘wariness/fearfulness’, termed meso- or macro-avoidance, respectively [2]; or

collision with rotating turbine blades [3]. On the potential absence of mutual exclusivity, red-

tailed hawk Buteo jamaicensis declined after a wind farm’s construction (inferring avoidance)

[4], but there were also collision victims. Similar results have been found for migrating black

kite Milvus migrans [5,6]. There are other species, such as turkey vulture Cathartes aura and

raven Corvus corax, which appear abundant within wind farms but with very low collision

rates (e.g. [7–10]). Several other studies have also commented on how intra-species’ abundance

within wind farms do not correlate with recorded strike rates [3,6,11,12; although see 13].

These findings probably relate more to ‘micro-avoidance’ [2]: the capacity to avoid collision

with turbine blades once birds have entered turbine arrays [3,14–24].

Staying away from individual turbine locations (meso-avoidance) or entire wind farms

(macro-avoidance) can create functional habitat loss [1,2,5,25–28], whereas not staying away

can create fatality through collision (even if risk is reduced through micro-avoidance) [1–

3,10]. Potential impacts of wind farms thereby can be radically different so far as their planning

under ornithological impact assessments [6]. It is important that the predominant process

behind birds’ responses to turbines is identified, and why it may vary.

As concerns grow on potential population-level impacts on raptors and other long-lived

birds (e.g. [29–32]), measures to mitigate or compensate for adverse effects of wind farms are

increasingly being proposed and developed; primarily to prevent or minimise collision mortal-

ity or compensate for/offset its impact (e.g. [3,33,34]). One such measure involves Turbine

Shutdown Systems (TSSs) or “Shutdown on Demand” systems [3,35]. As birds approach mov-

ing rotor blades their rotation can be stopped in anticipation of potential collision event(s).

TSSs may be entirely automated (e.g. [36]) or involve more manual procedures (e.g. [37]).

TSSs assume that the primary effect to be mitigated is collision risk and birds are less likely to

be hit by or fly into a stationary blade than a moving blade [35–42].

Underlying topography can affect the way in which anabatic and/or orographic processes

provide external wind energy sources as uplift [43–46]. Soaring birds on migration may exploit

different uplift sources to when settled on wintering and breeding grounds, or to resident

birds [37,44,47,48]. Consequently, reactions to turbines may differ by annual cycle stage or res-

idency status [2,3,42].

The reaction of flying birds to stationary or mobile rotor blades has rarely been examined

explicitly in the context of avoidance. Studies describing flying birds’ approaches to turbines

typically do not discriminate rotor blades’ motion status (e.g. [19,49,50]). Early Californian

observations speculated higher raptor collision risk at small lattice turbine towers by facilitat-

ing perching opportunities [51]. In subsequent observations, however, perching almost always

occurred at lattice tower turbines that were inoperative [9,52,53] and inoperative lattice tur-

bines were relatively frequent [54]. This would infer reduced wariness of turbines with station-

ary rotor blades, although collisions were more likely adjacent to inoperative turbines [55].

Walker et al. [56] remarked that a resident pair of golden eagles Aquila chrysaetos in Scot-

land did not differentiate between stationary or moving blades when avoiding turbines. Rec-

ords of GPS-tagged Scottish golden eagles during dispersal also showed avoidance and did not

differ in proximity to turbines of different rotor diameter, inferring that birds reacted to the

presence of turbine towers and not to their blades [57].

As facultative or obligate dependents on external wind energy to fuel flight, soaring birds’

flight behaviour is also often conditional on weather [12,19,58], especially wind speed and

direction for those exploiting orographic uplifts from topographic features [12,44–46,48].

Focus via specific turbines on relationships between wind, topography, birds’ flight behaviour

and collision risk may be highly informative [8–10,37,48,54,55]. Inadequate orographic wind
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energy through low wind speed placed an obligate soaring species, griffon vulture Gyps fulvus,
at greater collision risk by reduced uplift to fly over turbine blades [48].

Numerous studies of birds’ interactions with wind farms involve a single or a small number

of wind farms (e.g. [4,47,49,59–62]). Research may effectively treat wind farms as uniform fea-

tures (e.g. [63,64]). However, when examined, an increasing finding is that wind farms are not

homogenous entities, and individual turbines may produce adverse impacts not shown by oth-

ers in the same facility [8,10,12,37,47,54,55,65,66]. Such findings can be instrumental in future

wind farm design or in repowering schemes [6,48,66,67].

Thus, case studies have merit, especially if they involve detailed data which allow focus at

fine scales e.g. at specific turbines and/or involving known individual birds’ flight behaviour.

Generating detailed data on birds’ flight behaviour increasingly involves the accuracy and pre-

cision provided by GPS telemetry [5,18,24], and can be informative even when not collected at

operational wind farms [44,45,68,69]. Case studies can thereby complement research at larger

scales [68,70–76].

Much research on birds and wind turbines has focused on raptors, especially large soaring

species [77]. These species are typically considered to be vulnerable to collision with turbine

blades [3,10,77–79] and are sensitive to additive mortality in older individuals [32,53,80,81].

As a facultative-soaring large raptor the golden eagle exemplifies these features of concern.

Several studies of golden eagles indicate or assume that birds are not displaced from wind tur-

bines i.e. do not show meso- or macro-avoidance, and so are vulnerable to collision mortality

[22,32,34,44,71–73,82–87] although see [43,72]. Results from Scotland are contrary, in sub-

stantially finding macro-avoidance [56,57,88,89].

Our study involved two wind farms in central Scotland utilising data from individual tur-

bines on date of first operation and, after operation date: rotor blades’ motion status (station-

ary or moving) and wind speed. Numerous telemetry records from several dispersing golden

eagles tagged with GPS-tags were used to document tag location data or flight line location

data on 3-D distances to turbine locations before and after individual turbines’ operation; and

after operation, according to blades’ motion status and wind speed. The influence of intrinsic

eagle habitat preferences underlying turbine locations and telemetry records was also

involved.

Following previous Scottish studies (see above), our first hypothesis was that golden eagles

would be further from locations after turbines had begun operating there i.e., golden eagles

showed avoidance. Under a second hypothesis, from [56,57], we predicted that eagle flights

would not differ in proximity to turbines according to blades’ motion status (stationary/mov-

ing). Our third hypothesis expected that eagles would be further from turbines at lower wind

speeds because gaining access to turbines’ relatively high elevations was conditional on the

orographic uplift energy provided by wind. A contrary alternative hypothesis, following [48],

would expect that at lower wind speeds golden eagles would fly closer to operational turbines.

Methods

Study area and species

Dunmaglass (57.243˚, -4.262˚) and Stronelairg (57.097˚, -4.437˚) wind farms are in the Mon-

adhliath Mountains of Scotland’s central Highlands (Fig 1). Dunmaglass has 33 (3 MW) tur-

bines with 80 m towers and three 40 m blades. Main construction works began 1 June 2014;

the first turbines were erected May 2016, and turbines were operational between 7 November

2016 and 26 March 2017. Mean elevation at the base of towers is 697 m asl. Stronelairg has 66

(3.6 MW) turbines with 73 m towers and three 57.5 m blades. Main construction works began

20 April 2017; turbines were erected between 21 September 2017 and 5 October 2018 and were
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operational between 26 March 2018 and 6 November 2018. Mean elevation at the base of tow-

ers is 669 m asl.

The vegetation in and around the wind farms is open upland: primarily heather Calluna
vulgaris moorland, and wet heath. The topography is sloped valley sides of varying steepness

cut by watercourses primarily running southwest to northeast, with higher plateaux and

smooth ridges at 450–805 m asl. Land use primarily involves the shooting of red (willow)

grouse Lagopus lapopus scoticus and red deer Cervus elaphus.
The study area and the wider region are popular with non-territorial golden eagles during

dispersal [90, S. Benn unpublished data]; and see Fig 1. Over the last decade the surrounding

wider region has seen a major expansion in occupied territories where breeding productivity is

Fig 1. The location of Dunmaglass and Stronelairg wind farms in central Scotland (D and S in black, with other wind farms in dark

grey: Internal box). Wider illustration shows the location of turbines (red circles) including the Corriegarth Wind Farm (blue circles),

between Dunmaglass and Stronelairg, which was fully operational 30 September 2016. Black dots show non-territorial golden eagle GPS-

telemetry records (� 530,000) from after Stronelairg became operational in 2018 (see main text). The backdrop is a colour scale

representation of eagle habitat preference according to the Golden Eagle Topography (GET) model [45], with darker tone indicating greater

predicted preference. Contains Ordnance Survey data © Crown copyright and database right 2017.

https://doi.org/10.1371/journal.pone.0254159.g001
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relatively high [90]: much of this expansion has been due to a relaxation in illegal persecution

which was associated with intensive management for driven shoots of red grouse in the region

[90]; see also [80,89,91]. This expansion has apparently been unimpeded by the presence of

wind farms (S. Benn unpublished data). Judging from wider dietary studies [92] and food item

collections at nest sites in the region [93] the main diet involves mountain hare Lepus timidus
and red grouse, with red deer carrion likely common in the non-breeding season. Scotland

hosts more than 500 golden eagle pairs occupying territories [94] and substantially more non-

territorial birds [89,91].

GPS-tags and deployment

Eagles were GPS-tagged as nestlings when 50–70 days old, as judged by plumage [95,96] and

weighed between 3.4 and 5.0 kg at tagging. Transmitters were fitted using a harness of 13 mm

Teflon Ribbon (Bally Ribbon Mills, Bally, PA, USA) using a ‘X harness method’, otherwise

described as a “crossover wing harness” [97]. Harnesses had a breakaway feature by stitching

through ribbons with either cotton or linen thread at the central point over the sternum

([98,99] intended to remain attached for the minimum expectation of a 3–5 year natal dis-

persal period [92,100,101]).

Two tag models were deployed:

• 70 g solar powered GPS/GSM transmitters (PTTs) (n = 9, deployment years 2015–2018)

manufactured by MTI (Microwave Telemetry Inc., Columbia, MD, USA). Transmission is

over the mobile phone (GSM) network and GPS fix rate is dependent on battery charge

(dynamic adjusted fix rate dependent on battery charge from 1 per minute to 1 every 2

hours). Transmissions are attempted to GSM network twice daily. Longevity of transmitters

was suggested at� 3 years by MTI.

• 70 g solar powered GPS/Argos transmitters (PTTs) (n = 14, deployment years 2007–2015).

GPS fixes and transmissions cycles adjusted by pre-programmed fix rate and transmission

schedule (duty cycle): maximum fix rate was hourly during daylight hours. Longevity of

transmitters was suggested at� 3 years by MTI.

Transmitter weights and harnesses were less than the 3% lower recommended maximum of

body weight [102] and the higher recommendation of 4% [99] (see also [103]). All birds were

tagged under appropriate licences granted by Scottish Natural Heritage (SNH) and the British

Trust for Ornithology (BTO). Satellite tagging should not have adverse effects on study indi-

viduals [103,104]. No evidence of adverse effects of tagging has been found in Scottish studies,

under physiological, behavioural or demographic evaluations [89].

Wind turbine data

Data on a per-turbine basis were obtained from wind farms’ operators up to 24 April 2020:

date of erection, date of operation, rotor speed, and wind speed (via hub-sited anemometers).

Wind speed and rotor speed data were simultaneously available every 3 h for each operational

turbine. Data on rotor speed were binary-classified into still (stationary) or moving blades for

analyses.

GPS-tag data

Accuracy of GPS PTT tag location records is given by MTI as ± 18 m horizontally and ± 22 m

vertically but can be more accurate in practice [89,105]. Records involve varying HDOP (Hori-

zontal Dilution of Precision) and VDOP (Vertical Dilution of Precision) values per fix. Use of
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lower values enhances data precision and accuracy. Conservatively we used only fixes < 3.5

HDOP (cf< 10 HDOP [106]) in keeping with the 50-m pixel resolution of our habitat prefer-

ence predictions [46] and see later. We also excluded records if altitude data were unavailable

or potentially inaccurate (> 6 km). Records between sunset and sunrise were removed because

it was assumed birds would then be roosting and interactions with turbines were improbable.

We used the R suncalc library (0.5.0) to estimate sunrise and sunset for each record location

and date.

Telemetry records included only those during natal dispersal (or juvenile dispersal: [107–

109]: hence, after dispersal from the natal territory [109,110] and before breeding territory set-

tlement [46] (see also Fig 1). Taking the centre of Stronelairg as the ‘destination’ location, the

23 tagged birds originated from nests 5–216 km (mean 67 km) distant; to Dunmaglass centre,

natal nests were 15–233 km (mean 71 km) away.

Examination of the influence of turbines on flight behaviour may be confounded if birds’

records are taken from distances where turbines could not possibly be influential [28]. There-

fore, analysed data included those fixes or flight line records (see below) within 1 km of a wind

turbine location: this cut-off was a precautionary maximum based on previous studies of Scot-

tish golden eagles’ displacement and disturbance distances [56,88,111].

In before-and-after (pre- v post-) operation analyses we used data provided by fix locations

(n = 19,629) to estimate distance from a turbine. If a tag record was earlier than the date at

which a turbine became operational, or the turbine was under construction, it was assigned to

a pre-operational (before) class. Later tag data were assigned to a post-operational (after) class.

Availability of tag records, according to wind farm construction and turbine operation dates

(see above) meant that for both wind farms many pre-operational telemetry data were during

construction. Disturbance in the construction phase may displace birds [63,88]. In pre- and

post-operation comparisons for testing the macro-avoidance hypothesis, this made our test

conservative.

For post-operation analyses, we used data only from GPS/GSM tagged birds (n = 7 birds

after excluding two with< 10 records post-operation). The high temporal frequency of fixes

from GPS/GSM tags (see above; [105]) allowed flight lines to be approximated between conse-

cutive records. The accuracy of such approximations depends on the time between consecutive

fixes, and all consecutive records> 5 min apart were excluded. The derived flight line could

indicate greater proximity to a turbine location than its composite start-end points alone by

estimating the shortest orthogonal distance between a flight line and turbine hub.

Distance to turbines

We used closest distance from a tag record (before-and-after-operation analyses) or flight line

(after-operation analyses) to a turbine hub location as our measure of eagles’ proximity to a

turbine. Flying birds can avoid wind turbines in 3-D (e.g. [5,43]) and if 2-D horizontal dis-

tances are used (e.g. [64]) a bird flying ‘across’ but well above a turbine array could incorrectly

be deemed to be close to a turbine location, falsely suggesting no avoidance. Telemetry records’

closest distances to turbine hubs were consequently calculated in 2- and 3-dimensions. The

3-D distance was derived via trigonometry using the closest 2-D distance and the difference in

above ground altitudes between telemetry record and turbine hub (80 m and 73 m for Dunma-

glass and Stronelairg turbines, respectively). The altitude for a flight line, at its closest point to

a turbine, was given by the altitudes of its composite consecutive start and end records

weighted by the relative length of the line at its closest 2-D pass location. Approximating the

flight segment as a straight line does not allow for micro-avoidance of turbines so distances to

turbines were likely to be conservatively low.
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Once the closest distance of a flight line to a turbine hub had been calculated, the recorded

time (based on start and end fixes) was rounded to the nearest 3 h to match the wind speed

and the blade status (stationary/moving) records from the same turbine (see above). The tem-

porally coincidental wind speed and blade status data were used in post-operation analyses.

Most distances to the nearest turbine were to outer turbines. There were few records within

the wind farms (< 5% of post-operational location records: Results) and a proportion of these

would have been closest to an external turbine. Although it was possible, but sometimes arbi-

trary (Fig 1), to allocate turbines to an internal or external location this was undesirable as

birds’ distances to inner turbines were inevitably skewed by strong right-censorship, especially

in 2-D, due to spacing distances between turbines e.g., at Stronelairg the maximum 2-D dis-

tance to inner turbines was 250 m while for outer turbines it was the 1,000 m buffer limit.

Intrinsic habitat preference

Turbine locations may be avoided or not used because they are not in habitat (including air

space) preferred by golden eagles and hence we included a measure of habitat preference in

analyses. We used the Golden Eagle Topography (GET) model [46] to predict space use by

golden eagles independent of the presence of turbines. GET provides a topographically based

surrogate for the availability of orographic winds, which have repeatedly been found as influ-

ential in habitat selection studies of golden eagle and other large facultative/obligate soaring

raptors [46]. ‘GET scores’ range from 1–10 and a GET 6 score is a switch point in preference,

so that GET 6+ indicates increasingly preferred habitat. Because a GET score has three ele-

ments it is possible, for example, for a GET 6+ score to involve a relatively low preference for

altitude, but relatively high preference for slope and distance to ridge. For the background

landscape, all 50-m pixels in Scotland had GET scores [46].

A GET score for each turbine location, and hence the indicative eagle preference, was

derived from the mode of the 50-m pixel containing the turbine tower and the four surround-

ing pixels. From tag records, the GET score was also calculated from the 50-m pixel underlying

the closest 3-D distance of a tag fix or flight line to a turbine location.

Statistical analyses

In before-and-after-operation analyses we used turbine location GET score, the tag location

GET score, and pre-post operational status as predictors (fixed effects) of the 3-D distance

between tag record locations and turbine locations. Our data contained repeated records from

the same wind farms, turbines and birds and these were likely to violate the assumption of

independent y-values [112,113]. Therefore, we used linear mixed models (GLMMs) with wind

farm identity, turbine identity and bird identity as random effects in all models. With the

involvement of interaction terms, we fitted twelve potential candidate models including a null

model with random effects but no fixed effects. We fitted two-way interactions to only those

models containing two main effects.

In after-operation analyses we used turbine location GET score, flight line GET score, blade

motion status (stationary/moving), and wind speed at turbine hub as predictors (fixed effects)

of the 3-D distance between flight lines and turbine hubs. GLMMs included wind farm iden-

tity, turbine identity and bird identity as random effects. With inclusion of interaction terms

and a null model, 27 candidate models were fitted.

Lowest Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC)

scores were used to select the best model from candidate model sets. The best candidate mod-

els were assessed by examinations of standardised residuals against fitted values [114]. Model-

ling used the lmer function (REML = FALSE to obtain AIC and BIC values) from the lme4
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package (1.1–26), in program R (3.6.1) [115,116] and the lmerTest (3.1–3) to obtain p values

for the best model. We divided the amount of observed variation explained by the best model

into a marginal coefficient of determination (variance attributable to the fixed factors), and a

conditional coefficient of determination which includes the variance attributable to both fixed

and random factors [117]. Partial effect plots were produced using the effects package (4.2–0).

Results

Before-and-after-operation analyses

Observed mean distance to a turbine hub was 75 m larger on average once turbines became

operational (mean ± sd, CI 95%, n: before 604 ± 273 m, 152–995 m, 2,194; after 679 ± 233 m,

293–990 m, 17,340). Despite the larger turbines, tag records were closer, on average, to the

Stronelairg turbine hubs both before and after they became operational (mean ± sd, CI 95%, n:

Stronelairg before 599 ± 272 m, 152–994 m, 1,979; Stronelairg after 659 ± 204 m, 270–968 m,

10,203; Dunmaglass before 654 ± 277 m, 151–999 m, 215; Dunmaglass after 707 ± 198 m, 380–

697 m, 7,137).

As the GET score at the turbine location increased golden eagle records were closer (Fig 2)

but mean distances were greater after turbines became operational. The relationships between

GET scores and distance to a turbine were more complex when the GET score at bird locations

were analysed (Fig 2). Before turbines became operational birds were further away at the

higher GET scores. A similar relationship was less clear after turbines became operational.

Generally, birds were further from the turbines once they became operational except at the

higher GET scores. The observed and fitted distances from the best model (see below) were

very similar (Fig 2).

In simple descriptive statistics, only one of 17,346 post-operation records was within one

rotor blade diameter distance of a turbine hub (< 0.01%) and 83 were within two rotor diame-

ters distance of a turbine hub (0.48%). By comparison, in 2,283 pre-operation records, ten

(0.44%) distances were within one diameter distance of a future turbine location and 233

(10.21%) within two diameters distance. Hence, after turbines’ operation, golden eagles were

less likely to be recorded ‘close’ to turbine locations and close proximity to operational tur-

bines was rare. Using ΔAIC and ΔBIC [114,118] Model 11, the most parsimonious model was

the saturated one, with two and three-way interactions between the three fixed effects

(Table 1).

All terms in the best model were highly significant, with the exception of the intercept and

the two-way interaction between operational state and the tag GET score (Table 2). No prob-

lems were apparent with the residuals. 61.3% of the variance was explained by the model

(Table 2); 6.3%, by the fixed factors and 55.0% by the random factors. Therefore, the fixed fac-

tors did little to explain the effect on distance, while the identity of the eagles, turbine identity

and wind farm showed a strong effect. The largest component of the explained variance was

the turbine identity random factor (71.7%).

The displacement response to turbines was complex, as indicated by the significant interac-

tion terms (Table 2). The level of displacement depended on absolute and relative GET scores

at a turbine’s location and the bird’s location and the quality of the golden eagle habitat. In

general, if both the turbine and surrounding habitat had high GET scores a bird would be

closer to a turbine but this was mediated by the turbine’s status, although not in a consistent

way. This is reflected in the much higher share of explained variance associated the turbine ID

random factor (Table 2).

The signs (+ or -) of the turbine GET fixed factor in Table 2 are misleading when compared

with the fitted and observed relationships (Fig 2). This is probably a consequence of
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multicollinearity involving both fixed and random factors, but particularly the GET scores and

the turbine status (see later after-operation analysis). We investigated this by examining the

tag GET predictor effect plots (Fig 3). This shows the complex relationship between the

Fig 2. Mean distances to turbine hubs, with 95% confidence limits, in relation to the operational state (before and after). Solid lines

are fitted distances from the best model, dashed lines are observed distances. Black and gray lines are post-operation distances while red

and dark red lines are before-operation distances. The upper plot is the GET score at the turbine location and the lower plot is the GET

score at the birds’ locations.

https://doi.org/10.1371/journal.pone.0254159.g002
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attractiveness of turbine and landscape habitat as quantified by the GET score and how this

changed once turbines become operational (lower panel row) compared with before there

were turbines at those locations (upper panel row). When the turbine GET score was less than

six (generally little used habitat) birds were recorded further from turbines as the GET score at

Table 1. The twelve model candidates in before-and-after-operation GLMMs with resultant model selection values of ΔAIC and ΔBIC.

Model Fixed factors df ΔAIC ΔBIC

0 Null model 5 2259.3 2298.7

1 GET score at turbine (GETturb) 6 2261.0 2308.2

2 Pre-post operational status (Postop) 6 2257.1 2304.3

3 GET score at tag location (GETtag) 6 961.3 1008.5

4 GETturb + Postop 7 2258.7 2313.8

5 GETturb + Postop + GETturb�Postop 8 2260.0 2323.0

6 GETturb + GETtag 7 960.0 1015.2

7 GETturb + GETtag + GETturb�GETtag 8 359.0 422.1

8 Postop + GETtag 7 960.3 1015.5

9 Postop + GETtag + Postop�GETtag 7 960.3 1015.5

10 GETturb + Postop + GETtag 8 959.0 1022.0

11 GETturb + Postop + GETtag + GETturb�Postop + GETturb�GETtag + Postop�GETtag + GETturb�Postop�GETtag 12 0 0

(see Table 2 for model 11 AIC & BIC values).

https://doi.org/10.1371/journal.pone.0254159.t001

Table 2. Summary statistics for the best GLMM (Model 11: Table 1) examining 3-D distance of eagle tag records to the vicinity of a turbine location in before-and-

after-operation analyses: Turbine GET = GET score at the turbine location, Postop = a binary value around the date when a turbine became operational, Tag

GET = GET score at the tag location, � indicates interaction.

Null Model Full Model

Coefficient Estimates P-Value Estimates P-Value
Intercept 483.96 (398.11 – 569.81) <0.001 -34.71 (-253.51 – 184.10) 0.756

Turbine GET 76.64 (41.36 – 111.91) <0.001

Operational (After) -189.92 (-326.41 – -53.44) 0.006

Tag GET 68.20 (50.91 – 85.48) <0.001

Turbine GET � Operational 86.80 (62.61 – 110.98) <0.001

Turbine � Tag GET -10.04 (-12.99 – -7.10) <0.001

Tag GET � Operational 11.71 (-5.56 – 28.98) 0.184

Turbine GET � Operational � Tag GET -9.13 (-12.12 – -6.15) <0.001

Random Effects

σ2 30,626.0 27,247.2

τ00 28,645.2 T_ID 30,898.9 T_ID

5,796.5 ID 5,244.8 ID

2,554.0 windfarm 2,481.9 windfarm

N 2 windfarm 2 windfarm

96 T_ID 96 T_ID

23 ID 23 ID

Observations 19,534 19,534

Marginal R2/Conditional R2 0.000/0.547 0.063/0.613

Wind farm identity, turbine identity (T_ID) and bird identity (ID) were random factors. 95% CI are given below the estimates. The lower part of the table is information

on the random effects. The R2 values are marginal (variance of the fixed effects) and conditional R-squared (variance of the fixed and random effects) statistics, based on

[117].

https://doi.org/10.1371/journal.pone.0254159.t002
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the bird’s location increased. This reflected a situation in which the better habitat was away

from the turbines, so birds would be drawn away from the turbine locations. However, the

upper panel row (Fig 3) illustrates that, before the presence of operational turbines, birds

approached closer as the turbine GET score increased, particularly when the bird was also over

more-preferred habitat. Note the increasing steepness of relationships in plots going to the

right, illustrating the increasing habitat attractiveness via GET score at the turbine location rel-

ative to the attractiveness underlying the bird’s location (Tag GET score). This reflects a situa-

tion in which an increasingly attractive turbine location resided in regions of varying

attractiveness to eagles. The lower panel row (Fig 3) shows the same relationships were present

at the same locations after turbines were operational. This suggests that the attractiveness of

turbine habitat can be suppressed once turbines were operational; while there remains, albeit

much diminished, attractiveness at turbine locations in the most highly preferred turbine GET

scores (9 and 10).

It is clear from the analysis that much of the variation in approach distances was a turbine-

specific issue some of which may have been related to the position of a turbine in a wind farm

and the layout of the wind farm and its relationship with surrounding habitat. While we could

not incorporate an ‘internal/external’ wind farm turbine factor without risk of spurious results

(see above) it was apparent from simple comparisons of use of turbine locations before and

after operation date that the operation of turbines effectively caused an abandonment of habi-

tat within the interior of both wind farms (Fig 4). This abandonment seemed regardless of

intrinsic habitat preference (GET scores) underlying inner turbine locations. Such that, after

Fig 3. Tag GET effect plot showing the relationship between the fitted distance to the nearest turbine hub (y) and the GET score at a bird’s location. The upper row

shows the relationships before turbines became operational and the lower row shows the relationships after turbines became operational. The panels show how the

relationship is conditional on the GET score at the nearest turbine’s location. Blue lines and blue shading show the mean and 95% CL ranges, respectively.

https://doi.org/10.1371/journal.pone.0254159.g003
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turbine operation eagle activity was largely restricted to the vicinity of outer turbines in pre-

ferred habitat, and in particular to some outer turbines, often with extensive preferred sur-

rounding habitat (Fig 4).

After-operation analyses

After-operation analyses used only telemetry data after turbines became operational. These

data were different in their derivation to those used in before-and-after-operation analyses by

utilising the higher temporal frequency provided by GPS/GSM tags to approximate the closest

3-D proximity of a flight line to a turbine hub. Such approximation should allow a smaller dis-

tance than from either the line’s start or end point (Methods). Despite this, it is worth noting

Fig 4. Proportions of eagle tag records at turbine hub locations at Stronelairg (left two panels) and Dunmaglass (right two panels), before and after turbine

operation (above and below; by wind farm). Black circles are quantiles (1–5) with larger circles indicating greater proportions of records. The backdrop (1–10)

shows the GET score [45] by 50-m pixels in intrinsic habitat preference with a higher score (darker) indicating higher preference. The horizontal white bar is 1 km.

Note the relative reduction of records in proximity to ‘inner’ turbine locations after turbine operation and that after turbine operation, golden eagle activity was

further restricted to the vicinity of a few ‘outer’ turbines’ locations: Particularly pronounced at Dunmaglass. Contains Ordnance Survey data © Crown copyright

and database right 2017.

https://doi.org/10.1371/journal.pone.0254159.g004
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that flight line records were again rarely close to operational turbines (Fig 5). This was appar-

ent at both the study wind farms and, subjectively, at a third wind farm located between them

(Fig 6: see also Fig 1). The 0.025 quantiles for the calculated distances to a turbine hub were

204 m (still) and 140 m (turning) at Dunmaglass and 124 m (still) and 123 m (turning) at Stro-

nelairg. Thus, birds rarely approached closer than 80 m to the tip of turbine blades.

There were two high-ranking models according to ΔAIC and ΔBIC [114,118]: Models 24

and 26 (Table 3). Model 26 was the most complex and had the lowest AIC score but no signifi-

cant main effects or interactions. Given the relative merits of AIC and BIC in the circum-

stances, and to facilitate interpretation and parsimony, Model 24 was selected as the best

(Table 3). No problems were apparent with the residuals. 55.9% of the variance was explained

by the best model (Table 3); 8.6% was the due to the fixed factors and 47.3% was due to ran-

dom factors. Although the fixed factors explained a larger proportion of the variance than in

the before-and-after model it was still small compared with the effects of the identity of the

eagles, turbine identity and the wind farm. The largest component of the explained variance

was again the turbine identity random factor (75.2%).

All single and two-way interaction terms in the best model were significant (Table 4).

Although significant, the effect of Turn was small with an overall fitted difference of only 5 m

(mean distance to turbine hub: 287 m (still) & 282 m (turning)). The observed means were 288

m (still) and 282 m (turning). Overall, birds got closer as wind speed increased (Fig 5) but

there was evidence for a possible non-linear relationship when turbine rotors were still. Unlike

the before-after analysis, the GET coefficient was negative as expected from the observed dis-

tances. Removing the turbine operational status appeared to remove the multicollinearity

issues of the before-after analysis.

As in the before-after analyses birds got closer as the turbine GET score increased but the

distance was conditional on turbine rotor motion and wind speed (Figs 5 & 7). The predictor

effect plots (Fig 7) show the general tendency for closer approaches as turbine GET score

increased but they also show clear differences depending on whether the rotor was turning or

still. The slope of the influence of the turbine GET score was always less when rotors were

turning, irrespective of wind speed. However, all slopes increased as wind speed decreased

although the closest approaches were, on average, when wind speed was higher.

Discussion

Results supported our first hypothesis that golden eagles in Scotland showed avoidance of tur-

bines, in keeping with previous studies [56,57,88,89]. After operation of the 99 turbines in the

two wind farms, the distance of GPS-tagged eagles to turbine locations increased and turbine

operation (Postop) was a significant factor in our best before-and-after-operation model

(Table 2).

Displacement from operational turbines through avoidance was not, however, a simple

relationship. Modelling indicated that birds’ proximity to turbines–while typically rarely

close—was dependent on the intrinsic habitat attractiveness of turbine locations, and its connec-

tivity to the surrounding habitat’s attractiveness where a bird was. Birds were recorded closer to

turbines which were in preferred habitat and–especially–when the birds were using nearby pre-

ferred habitat. The Postop displacement effect was conditional on turbine-specific habitat prefer-

ence, as evidenced by the dominating effect of turbine ID in accounting for the explained

variances. This is likely to be associated with the strongly influential habitat preference profile of

landscape surrounding the turbines and a turbine’s position within the wind farm.

A focus on displacement distances has direct practical application in assessing the impact of

the avoidance effect when avoidance equates to functional habitat loss [1,2,5]. We could not
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Fig 5. Relationships according to the best after-operation GLMM (Model 24: Tables 3 and 4) between: a) GET score (habitat preference increasing with score) at

a turbine and fitted distance of an eagle flight line to a turbine hub, for turbines with moving blades (black dots, black short-dashed mean trend line) or
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explicitly examine the effects of a turbine’s location within a wind farm because modelling

birds’ nearest distances to inner turbines is constrained by inter-turbine spacing. Nevertheless,

eagles appeared to abandon the vicinity of internal turbine locations after a wind farm became

operational (Fig 4). In application, therefore, our results suggested that assessing the impact of

a wind farm (in Scotland, at least) should be based primarily on the functional loss of all habi-

tat within a buffer around the outer turbines. A displacement distance of 75 m has been found

[57] although on a precautionary basis the buffer should be larger (Figs 2 and 5).

Such an assessment prescription for wind farm proposals implies that collision risk is not a

substantive factor in young Scottish golden eagles, and so anticipating population impacts of

wind farms should be based on habitat loss and not additional mortality. Although these

impacts are substantially different, both are potentially serious [1–3,5,32,77]. As previously

noted (Introduction), the antagonism between avoidance and collision risk does not necessar-

ily indicate mutual exclusivity. In at least two studies which concluded avoidance as the sub-

stantial response of raptors to wind farms, a few collision fatalities were evident [4,5]. Indeed,

consistent with earlier emphases on the importance of individual turbines in generating colli-

sion fatalities [6,37,48], we also found that displacement was weakest (and so collision risk

strongest) at particular turbines (e.g. Fig 4).

Moreover, at Stronelairg a collision casualty of an untagged subadult golden eagle was

found under an outer turbine in early May 2020. Although this might be considered an outlier

event in a Scottish context it illustrates further that the two potential adverse effects are not

mutually exclusive; even though such collisions are apparently very rare at Scottish wind farms

[57]. Such rarity is consistent with the findings of avoidance from both the national study [57]

and the present case study.

While collision risk was negligible our results suggest that greatest attention in siting tur-

bines should be on outer locations, such that highly preferred habitat is avoided by developers.

This would also help to minimise functional habitat loss, especially if there is a swathe of pre-

ferred habitat adjacent or nearby (see also [119]). Our results also suggested that inner tur-

bines, even in preferred habitat, are less risky for collision, although clearly post-operation

abandonment of such locations should factor into estimating functional habitat loss. In identi-

fying preferred habitat for golden eagles our study gave additional independent support to the

GET model’s predictive capacity [46]. Further, on wind farm design, wind farms composed of

single strings/rows are probably worse for elevating collision risk because all turbines poten-

tially contribute to that risk, reflecting findings at two wind farms elsewhere in Scotland [88]

and echoed elsewhere [47,48,54,55].

Our after-operation analyses used flight line data which should provide records at greater

proximity to turbines than their start and end points (Methods), as the distance can never be

greater than the end point distances. These results re-affirmed, however, that eagles rarely

went close to operational turbines, consistent with avoidance (Figs 2, 5 and 6). After-operation

analyses confirmed the role of the attractiveness of habitat in turbine proximity and also re-

emphasised, via the importance of the turbine ID contribution to the explained variance, that

birds’ approach-distances to turbines did not have a simple basis.

Under hypothesis 2 (Introduction), we expected that birds would not react differently to

rotor blades according to their motion status. Although Turn was a significant fixed effect

stationary (grey stars, solid grey mean trend line); and b) Wind speed and fitted distance of an eagle flight line to a turbine hub, for turbines with moving blades

(black dots, black short-dashed mean trend line) or still (stationary) blades (grey stars, solid grey mean trend line): Trend lines are best-fit polynomials (x + x2).

In both panels (a and b), grey shading shows 95% CL, and the black long-dashed horizontal line shows 100 m distance to a turbine hub, for illustrative context. Blade

lengths from hubs were 57.5 m (Stronelairg) and 40 m (Dunmaglass). No turbine location had a GET score< 4.

https://doi.org/10.1371/journal.pone.0254159.g005
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Fig 6. Flight lines derived from GPS/GSM-telemetry data after Stronelairg (lower array) had become fully operational in 2018 (see main

text), with a darker emphasis on those within 1 km of the two study wind farms. Turbine locations are red (Stronelairg and Dunmaglass:

study sites) or blue (Corriegarth) circles. The white overlay is 10 km grid square with backdrop of GET model predictions of habitat preference

[45] in three classes of preference scores (see legend): arrow shows north. Note that in 3-D approximately 75% of flight lines passing ‘across’ the

wind farms were at altitudes above the limits of the highest blade tip extension of turbines and<1% were within a rotor blade width of the hub.

Contains Ordnance Survey data © Crown copyright and database right 2017.

https://doi.org/10.1371/journal.pone.0254159.g006
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(Table 4) the overall magnitude of the effect was small. At low wind speeds eagles were

recorded further from turbines with motionless blades in less attractive habitat. In practice,

this result was moot in application since eagles were recorded at greatest distances from ‘unat-

tractive’ turbines at low wind speed (i.e. they ventured into the wind farms’ immediate sur-

roundings less often), and all turbines’ rotors had an automatic shut-down on blade motion at

wind speeds less than c. 3–5 m/s. On the other hand, at higher wind speeds (without automatic

rotor shut-down) eagles were recorded closer to turbines with motionless blades in the most

preferred habitat (Figs 5A and 7). This implied that when eagles approached turbines more

closely, they were aware and less wary of turbines whose blades were motionless.

In practice, through overarching avoidance, birds’ approach distances typically remained

large and motionless rotor blades were uncommon at higher wind speeds (when they were sta-

tionary at higher speeds, it was usually through routine maintenance and/or a failed rotor).

Therefore, the use of a TSS or “Shutdown on Demand” system [3,35] to mitigate avoidance

would probably offer little benefit in our study system; especially at inner turbine locations

where blade motion status probably had little bearing. Also, there is an important difference

Table 3. The twenty seven model candidates in after-operation GLMMs with resultant model selection values of ΔAIC and ΔBIC.

Model Fixed factors df ΔAIC ΔBIC

0 Null 5 187.1 108.4

1 GET score at flight line (GETtag) 6 185.2 112.0

2 GET score at turbine (GETturb) 6 182.8 109.6

3 Blade motion status (Turn) 6 164.2 90.9

4 Wind 6 105.0 31.8

5 GETturb + GETtag 7 180.4 112.5

6 GETturb + GETtag +GETturb � GETtag 8 158.3 95.9

7 GETturb + Turning 7 160.1 92.3

8 GETturb + Turning + GETturb � Turning 8 137.2 74.8

9 Turning + GETtag 7 162.5 94.7

10 Turning + GETtag + Turning � GETtag 8 156.1 93.7

11 Wind + GETtag 7 103.7 35.8

12 Wind + GETtag + Wind � GETtag 8 106.0 43.6

13 Wind + GETturb 7 101.1 33.3

14 Wind + GETturb + Wind � GETturb 8 103.1 40.7

15 Wind + Turning 7 94.2 26.4

16 Wind + Turning + Wind � Turning 8 69.5 7.1

17 GETturb + Turning + GETtag 8 158.0 95.6

18 GETturb � Turning � GETtag 12 109.6 69.0

19 Wind + GETtag + Turning 8 92.9 30.5

20 Wind + GETtag + Turning + Wind � GETtag +Wind � Turning + GETtag � Turning + Wind � GETtag � Turning 12 61.8 21.2

21 Wind + GETturb + GETtag 8 99.3 36.9

22 Wind + GETturb + GETtag + Wind � GETturb +Wind � GETtag + GETturb � GETtag + Wind � GETturb � GETtag 12 66.3 25.7

23 Wind + GETturb + Turning 8 90.4 28.0

24 Wind + GETturb + Turning + Wind � GETturb + Wind � Turning + GETturb � Turning + Wind � GETturb � Turning 12 40.7 0

25 Wind + GETtag + GETturb + Turning 9 88.7 31.7

26 Wind + GETtag + GETturb + Turning + Wind�GETtag + Wind�GETturb + Wind�Turning + GETtag�GETturb + GETtag�Turning

+ GETturb�Turning + Wind�GETtag�GETturb + Wind�GETtag�Turning + Wind�GETturb�Turning + GETtag�GETturb�Turning

+ Wind�GETtag�GETturb�Turning

20 0 2.7

� indicates interaction.

https://doi.org/10.1371/journal.pone.0254159.t003
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between a targeted turbine shutdown as a bird approaches and turbines that have stopped for

other reasons. Our turbine shutdown events were not directly comparable to a TSS. In a TSS

the turbine is stopped by an intervention which implies it was turning and there was a reason-

able wind speed. In many of our studied examples turbines were inoperable because the wind

speed was too low; in other cases, the turbines may have been undergoing maintenance. In our

data a turbine was likely to have been stationary before a bird approached and birds may

respond differently to one that was moving but which then stopped through TSS as the bird(s)

approached.

Our study involved a population of facultative soaring birds largely dependent on oro-

graphic uplift for external wind energy support of flight. Hence, the GET model (a topographic

surrogate for orographic wind uplift resources) and wind speed were highly influential factors

in our study. In other situations where anabatic (thermal) uplift is more important–such as for

many soaring birds on migration (e.g. [44,45,87])–the value of a TSS for those birds which

show avoidance [5,25] may be greater. Given that avoidance and collision risk may not be

mutually exclusive such TSSs could have dual benefits.

Under hypothesis 3 (Introduction) we expected that greater wind speed would decrease

birds’ distance to turbines. Our results confirmed this expectation. The expectation was

because eagles should be further from turbines at lower wind speeds since gaining access to

turbines’ relatively high elevations was conditional on the uplift energy provided by wind (in

Table 4. Summary statistics for the best GLMM (Model 22: Table 3) examining 3-D distance of eagle flight line records to the vicinity of a turbine location in after-

operation analyses: Turbine GET = GET score at the turbine location, Wind speed = mean wind speed at the turbine hub in a 3 hour period (m s-1), turning indicates

if the turbine blade was still or turning at the time of a bird record.

Null Model Full Model

Coefficient Estimates P-Value Estimates P-Value
Intercept 301.24 (265.69 – 336.80) <0.001 556.39 (435.04 – 677.74) <0.001

Turning -183.77 (-292.62 – -74.91) 0.001

Windspeed -15.02 (-22.82 – -7.22) <0.001

Turbine GET -31.70 (-51.24 – -12.16) 0.001

Wind speed x Turning 10.96

(2.44 – 19.48)

0.012

Turbine GET x Turning 23.83 (6.16 – 41.51) 0.008

Turbine GET x Wind speed 1.25 (0.03 – 2.47) 0.045

Wind speed x Turbine GET x Turning -1.19 (-2.51 – 0.13) 0.076

Random Effects

σ2 6,843.1 6,449.3

τ00 5,141.9 T_ID 6,145.4 T_ID

809.7 ID 503.0 ID

234.4 windfarm 260.1 windfarm

N 2 windfarm 2 windfarm

84 turbine 84 turbine

8 ID 8 ID

Observations 1,704 1,704

Marginal R2/Conditional R2 0.000/0.475 0.086/0.559

Wind farm identity, turbine identity (T_ID) and bird identity (ID) were random factors. 95% CI are given below the estimates. The lower part of the table is information

on the random effects. The R2 values are marginal (variance of the fixed effects) and conditional R-squared (variance of the fixed and random effects) statistics, based on

[117].

https://doi.org/10.1371/journal.pone.0254159.t004
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its orographic interaction with topography). Our results reveal that avoidance–as well as our

other documented influences—was proximately dependent on wind speed with lower

Fig 7. Turbine GET effect plot showing the relationship between the fitted distance to the nearest turbine hub (y) and the GET score at a turbine’s location.

The panels show how the relationship was conditional on wind speed (m s-1) and whether the turbine blades were still or turning. Blue lines and blue shading show

the mean and 95% CL ranges, respectively.

https://doi.org/10.1371/journal.pone.0254159.g007
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displacement at higher wind speeds. Consequently, while collision risk remained unlikely,

because of the distances to turbines, it was greater at higher wind speeds.

Our findings on wind speed again affirms the basis of the GET model, and further confirms

that preferred habitat at and/or in the vicinity of outer turbines encourages greater possibility of

collision; even if, in our study system, that risk was small. Our results’ support for hypothesis 3

was seemingly in contradiction to an alternative, posited from griffon vulture Gyps fulvus studies

[37,48]. The differences, however, are explicable by differences in species and study systems and

reveal that case studies which focus on detailed data provide insight beyond consideration of wind

farms as homogenous entities. Our studies suggest that in Scotland collision risk for golden eagles

is not a serious threat; from other research, that risk may be greater elsewhere. A universal applica-

tion of our results, nevertheless, is that assuming raptor flight behaviour around or in wind farms

is random (e.g. [15]) is wrong: on this our study adds to a growing chorus.

Golden eagle collision fatalities are empirically more likely in some other populations

[8,10,73,120], although in others the predominance of collision risk is more an assumption

[71,121] which may not hold [72] and migrating eagles may show altitudinal avoidance [43]. It

has been argued [57] that understanding the balance between the two processes (avoidance

and collision) in large raptors is in genotypic predisposition of wariness to the human “super-

predator” and phenotypic cost-benefits in its expression. We also found that eagles were typi-

cally wary of turbines (with apparent individual differences) and went closer to operational

turbine locations which were more attractive through the surrounding habitat preference, con-

sistent with [57]. The balance between avoidance and collision risk is thereby complex

[2,3,10,77]; it is demonstrably not simply ‘either/or’, and it is increasingly apparent that it rests

on both ultimate drivers and several proximate influences.
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assessment of wind-farms on population viability of a globally endangered long-lived raptor.—Biol.

Conserv. 142, 2954–2961.

30. Desholm M. 2009. Avian sensitivity to mortality: prioritizing migratory bird species for assessment at

proposed wind farms.—J. Environ. Manage. 90: 2672–2679.
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68. Reid T., Krüger S., Whitfield D. P. and Amar A. 2015. Using spatial analysis of Bearded Vulture move-

ment in southern Africa to inform wind turbine placement.—J. Appl. Ecol. 52: 881–892.

69. Murgatroyd M., Photopoulou T., Underhill L. G., Bouten W. and Amar A. 2018. Where eagles soar:

fine-resolution tracking reveals the spatiotemporal use of differential soaring modes in a large raptor.

—Ecol. Evol. 8: 6788–6799. https://doi.org/10.1002/ece3.4189 PMID: 30038775

70. Fielding A. H., Whitfield D. P. and McLeod D. R. A. 2006. Spatial association as an indicator of the

potential for future interactions between wind energy developments and golden eagles Aquila chrysae-

tos in Scotland.—Biol. Conserv. 131: 359–369.

71. Tapia L., Domı́nguez J. and Rodrı́guez, L. 2009. Using probability of occurrence to assess potential

interaction between wind farms and a residual population of golden eagle Aquila chrysaetos in NW

Spain.—Biodivers. Conserv. 18: 2033–2041.

72. Martı́nez J. E., Calvo J. F., Martı́nez J. A., Zuberogoitia I., Cerezo E., Manrique J., et al. 2010. Poten-

tial impact of wind farms on territories of large eagles in southeastern Spain.—Biodivers. Conserv. 19:

3757–3767.

73. Pagel J. E., Kritz K. J., Millsap B. A., Murphy R. K., Kershner E. L. and Covington S. 2013. Bald Eagle

and Golden Eagle mortalities at wind energy facilities in the contiguous United States.—J. Raptor Res.

47: 311–315.

74. Mojica E. K, Watts B. D. and Turrin C. L. 2016. Utilization probability map for migrating Bald Eagles in

northeastern North America: a tool for siting wind energy facilities and other flight hazards.—PLoS

ONE 11(6): e0157807. https://doi.org/10.1371/journal.pone.0157807 PMID: 27336482

75. Vasilakis D. P., Whitfield D. P. and Kati V. 2017. A balanced solution to the cumulative threat of indus-

trialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe.

—PLoS ONE 12: e0172685. https://doi.org/10.1371/journal.pone.0172685 PMID: 28231316

76. Vasilakis D. P., Whitfield D. P., Schindler S., Poirazidis K.S. and Kati V. 2016. Reconciling endangered

species conservation with wind farm development: cinereous vultures (Aegypius monachus) in south-

eastern Europe.—Biol. Conserv. 196: 10–17.

77. Watson R. T., Kolar P. S., Ferrer M., Nygård T., Johnston N., Hunt W. G., et al. 2018. Raptor interac-

tions with wind energy: case studies from around the world.—J. Raptor Res. 52: 1–18.
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