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A B S T R A C T   

Marine renewable energy developments (e.g. offshore wind, wave, and tidal) are an increasing feature within the 
marine environment. It is therefore important to understand the potential impacts of such developments on 
seabirds that use these environments. Land-based vantage point (VP) surveys are widely used to collect data for 
environmental impact assessments (EIAs) within tidal stream energy sites. However, tidal stream environments 
are highly dynamic and present challenges when conducting VP surveys, for example there can be varying 
detectability of seabirds due to near-surface turbulence. In recent years, there has been increasing interest in the 
use of uncrewed aerial vehicles (UAVs) to quantify animal abundance and distribution. Yet, to be effective for its 
use in EIAs, this approach needs to be assessed alongside standardised methods. This study provides the first 
comparison of at-sea abundance and distribution of surface-foraging seabirds in flight within a tidal stream 
environment using concurrent VP surveys and UAV transects. Applying a combination of GLMMs and GAMs, our 
results show that the two survey types produced similar counts of surface-foraging seabirds (tern species) in flight 
and reveal the influence of covariates affecting counts, including tidal state, sea state, and observer ID. Further, 
we estimated the overlap (Bhattacharyya’s affinity) between tern utilization distributions as a function of tidal 
state to compare the fine-scale distributions derived from each survey type. The distribution of terns detected, 
particularly by UAV transects indicated that the highest tern density occurred within the near-shore shallows 
during the ebb tide and extended into the main channel during the flood tide. Specifically, the UAV transects 
captured the association of terns with a visible shear line extending into the main channel. Therefore, EIAs may 
benefit from the use of UAV transect surveys alongside VP surveys to identify fine-scale distributions of seabirds 
more accurately. Despite these potential benefits, the application of UAVs for use in EIAs may be limited by the 
species resolution achievable using UAV imagery as well as the impacts of adverse weather conditions and low 
sun angles (glare). Ultimately, the selection of survey techniques will depend on the specific aims of the EIA, the 
target species, and species behaviour.   

1. Introduction 

Marine renewable energy developments (e.g. offshore wind, wave, 
and tidal) are increasing worldwide to help reach net zero CO2 targets. 

Marine renewables represent a largely untapped energy resource, with 
the potential to fulfil up to 7% of global energy demand (Esteban and 
Leary, 2012; Fox et al., 2018; Pelc and Fujita, 2002). More specifically, 
tidal energy alone is estimated to have the potential to deliver 
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approximately 20% of the UK’s current electricity needs (Melikoglu, 
2018). However, it is well established that nearshore tidal stream en-
vironments provide important foraging opportunities for seabirds (Hunt 
et al., 1999; Warwick-Evans et al., 2016; Zamon, 2003), therefore, in-
teractions between seabirds and renewable energy developments within 
these areas are likely to occur (Benjamins et al., 2015; Copping and 
Hemery, 2020). The protected status of many populations of seabirds 
has resulted in a legal responsibility to assess potential impacts of 
anthropogenic developments upon them (for example, in the EU, 
through Environmental Impact Assessments: The European Parliament 
and the Council of the European Union, 2009). 

Environmental Impact Assessments (EIAs) typically involve the 
collection of baseline data to characterise a site and quantify potential 
environmental impacts of the proposed development(s) (The European 
Parliament and the Council of the European Union, 2014; Wright, 2014), 
and in many cases, seabirds are a key component of the EIA for marine 
developments (Savidge et al., 2014; Sparling et al., 2015). Typically, 
primary data of interest for seabird site characterisation are species 
presence, abundance, and distribution. These surveys allow the extent of 
spatiotemporal overlap between seabird foraging distributions and po-
tential locations of anthropogenic structures in the marine environment 
to be quantified; crucial information required to assess the potential for 
interactions between seabirds and developments (Waggitt and Scott, 
2014). 

Vantage point (VP) surveys undertaken from the shore are widely 
used for assessing seabird abundance and distribution within nearshore 
areas as VP surveys are a cost-effective and logistically feasible method 
of data collection. However, the ability of VP surveys to gather data 
suitable for EIAs can be compromised by several biases stemming from 
detectability issues, particularly with increasing distance from the VP 
location, and the spatiotemporal resolution of data (Waggitt and Scott, 
2014); these biases are exaggerated in tidal stream environments 
(Benjamins et al., 2015; Waggitt et al., 2014). Tidal stream environ-
ments occur primarily in tidal passes found between landmasses and 
around shallow headlands (Adcock et al., 2013; Lewis et al., 2015). Due 
to high current speeds, these sites are characterised by a range of hy-
drodynamic features, such as boils (bottom-generated turbulence 
erupting at the sea surface), eddies, upwellings, and vertical/horizontal 
shear which produce pronounced surface-flow turbulence (Benjamins 
et al., 2015; Holm and Burger, 2002). Such features not only influence 
seabird habitat use, but also the ability of observers to detect foraging 
seabirds near the sea surface (Bibby et al., 2000; Buckland et al., 2001). 
This presents observers monitoring seabirds within high-energy envi-
ronments with challenges. Therefore, it is particularly important that the 
key issues and challenges outlined above are taken into consideration 
when devising land-based survey protocols for appropriate site charac-
terisation surveys and monitoring of seabirds within high-energy 
environments. 

In recent years, there has been an increasing interest in the use of 
uncrewed aerial vehicles (UAVs) to study animal abundance and dis-
tribution (Anderson and Gaston, 2013; Christie et al., 2016). UAVs have 
proven an effective tool for examining the behaviour of both individual 
and aggregating animals, quantifying animal densities and assessing the 
potential impacts of anthropogenic activities on vulnerable species or 
ecosystems (Anderson and Gaston, 2013; Hodgson et al., 2013; Kiszka 
et al., 2016). UAVs have the potential to survey sites quickly and allow 
access to remote locations that may be hard to access for traditional 
survey methods (McClelland et al., 2016). UAVs can also provide a 
different perspective of fine-scale seabird habitat use, beneficial for 
investigating interactions between seabirds and anthropogenic in-
stallations (Lieber et al., 2019). Yet, to date, the use of UAVs for moni-
toring seabirds has largely been applied to population size monitoring of 
ground and cliff-nesting birds during the breeding season (Brisson- 
Curadeau et al., 2017; Chabot et al., 2015; Hodgson et al., 2016; 
McClelland et al., 2016; Ratcliffe et al., 2015; Rush et al., 2018; Sardà- 
Palomera et al., 2012). To be effective as an approach for EIAs, this 

emerging platform needs to be assessed and analysed alongside stand-
ardised methods. 

This study provides the first comparison of at-sea abundance and 
distribution of seabirds within a tidal stream environment using con-
ventional VP surveys and concurrent UAV transects. The aim of this 
study was to improve our understanding of how data collected from 
UAV transects compares to data collected using traditional VP surveys, 
in turn assessing the effectiveness of UAVs for use in EIAs. Specifically, 
this study: (i) compares counts of surface-foraging seabirds (terns Ster-
nidae) in flight recorded from traditional VP surveys with those made 
from UAV transects; (ii) compares counts of surface-foraging seabirds in 
flight as a function of tidal state (Zamon, 2003); and (iii) assesses the 
overlap between tern distributions from each survey method to gain 
insight into the fine-scale distribution (habitat use) of mobile, surface- 
foraging seabirds in flight and investigates the use of prominent, 
tidally-derived hydrodynamics present at the site. We discuss the im-
plications of our findings on the marine renewable industry and seabird 
monitoring. 

2. Materials and methods 

2.1. Study site 

The study was performed within a dynamic tidal channel (“the 
Narrows”) located in Strangford Lough, Northern Ireland, UK (Fig. 1). 
Concurrent land-based VP surveys and UAV transects were carried out 
between 20 July and 24 July 2019 (n = 64). The geographic constriction 
of the Narrows results in a rectilinear flow pattern with strong horizontal 
current speeds, peaking in excess of 4.5 ms− 1 during spring tides, of-
fering several tidal stream energy test and demonstration sites (Lieber 
et al., 2018; Savidge et al., 2014). As a result of strong current speeds 
and numerous bathymetric features, the tidal channel is characterised 
by several pronounced wake features. Walter’s Rock, an island located 
on the north-eastern edge of the channel (Fig. 1), presents one of these 
natural wake features, characterised by diverse hydrodynamic features 
throughout the tidal cycle. Submerged during high water slack, Walter’s 
Rock generates localised boils, a shallow upwelling region during the 
ebbing tide (on the eastern side) as well as vortices and pronounced 
shear lines during peak tidal flows extending both into the nearshore 
shallows and towards the mid-channel. The latter has been shown to 
present a tidally predictable foraging location for surface-foraging terns, 
with the highest number of seabirds recorded during the flood tidal cycle 
(Lieber et al., 2019). 

2.2. Land-based vantage point surveys 

VP surveys (Points 1–4, Fig. 1) were carried out from the western 
shore of the tidal channel (Audley’s Castle, 54◦22′47”N, 005◦34′19”W) 
to record the abundance (use of the term abundance within this study 
refers to counts of individuals) and distribution of seabirds within the 
study area (Fig. 1), using telescopes (Swarovski ATS/STS HD 80 mm) 
fitted with 20-60× magnification zoom lenses. Surveys were carried out 
by two independent observers from four VP locations, all within 1.5 km 
of the survey area. For each survey, VP observers were situated at 
different locations, these locations varied in elevation above sea level: 
20 m, 18 m, 4 m, and 1 m (Points 1–4, Fig. 1; see also Supplementary 
Table 1). Different elevations were used to investigate how VP elevation 
may influence the comparison of counts made of surface-foraging sea-
birds in flight from VP surveys to those made from UAV transects. Land- 
based surveys consisted of scans between 4 and 10 min in duration as we 
aimed to ensure that the VP scan length matched that of the UAV 
transect survey as closely as possible. The length of scans was also 
influenced by the number of seabirds present within the study area. 
Vantage point survey scans such as these are often referred to as 
‘snapshot’ scans as they provide instantaneous counts of birds and their 
locations (Jackson and Whitfield, 2011; Robbins, 2017). 
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During each scan, seabird positions were located by triangulation 
using bearing and distance from the observer. The bearing of each 
sighting was measured using a handheld compass. The distance of a bird 
or group of birds from the observer was measured using a graduated 
rangefinder, as described by Heinemann (1981). However, as the hori-
zon was obscured by land at this site graduated rangefinders were 
modified from those outlined by Heinemann (1981). Rangefinders were 
created for each vantage point, taking into account the distance from the 
VP and a number of given locations on the opposite shoreline to ensure 
that rangefinders were positioned correctly for any given angle of the 
survey area. The accuracy of graduated rangefinders was ensured by 
calibrating each rangefinder using known distances along the shoreline. 
Additionally, rangefinders for VP 1 (20 m above sea level) were also 
calibrated using the UAV (see section 2.6 below). 

Before each scan, the following variables were recorded: sea state 
(Beaufort scale), cloud cover (% cover), tidal state (ebb or flood), sea 
surface glare (scale of 1–4, with 1 being “None” and 4 being “Severe”) 
(Supplementary Table 1), and the bearings of surface glare from the 
observer. Scans were not performed during precipitation and were 
limited to when sea state was 3 or lower on the Beaufort scale and vis-
ibility was higher than 1.5 km. As the location of each VP was <1.5 km 
from the study area, all seabirds, both on the water surface and in flight 
could be identified to species level with the exception of common tern 
Sterna hirundo and Arctic terns Sterna paradisaea which were combined 
as ‘Commic’ terns. Seabird behaviour was also recorded following 
Camphuysen et al. (2004). 

2.3. Uncrewed aerial vehicle transects 

To compare the VP-derived abundance and distribution of terns with 
UAV observations, concurrent parallel-line UAV transects were per-
formed across the survey area using either a DJI Mavic Pro recording 4 k 

video at 24fps or DJI Phantom 3 Advanced recording 2 k video at 30fps 
(Fig. 1). The UAV was operated by a CAA (Civil Aviation Authority) 
approved pilot and programmed to fly six consecutive transect lines 
using either the AutoPilot v.4.7.191 or the Litchi v2.6.6 autonomous 
flight application (Supplementary Table 2). The transects were per-
formed at altitudes of approximately 74 m (SD = 1.30 m) for the Mavic 
Pro and 61 m (SD = 1.09 m) for the Phantom 3 (giving a pixel ground 
resolution of 2.5 cm and 3.8 cm respectively for mean altitudes) to 
obtain the same spatial coverage with the differing camera fields of view 
(Supplementary Table 2). Each survey (n = 64) resulted in a total flight 
path of 2082 m. The survey times ranged from 04:25 min to 07:22 min, 
depending on the wind speed, with an average survey time of 04:55 min. 
The transect lines were planned such that the field of view (FOV) from 
adjacent lines (line spacing = 88 m) would overlap by about 10% to 
ensure complete coverage (Supplementary Fig. 1). This may introduce 
the possibility of “double-counting” seabird sightings within areas that 
have previously been covered by the UAV as it progresses along a 
consecutive transect line, see section 2.5 below on how overlap was 
accounted for during post-processing. All missions were completed in 
accordance with local regulations and flown by the same qualified (UK 
Civil Aviation Authority) pilot. To minimise the potential impact of the 
UAV upon species behaviour, UAV flights were carried out following 
best practice recommendations (Hodgson and Koh, 2016). This included 
maintaining reasonable distance from birds during flight (UAV flights 
were flown at an altitude >60 m above-surface level), using a relatively 
small and quiet UAV (Kuhlmann et al., 2022), ensuring that the vertical 
ascent of the UAV was made before travelling over the survey area and 
avoiding sporadic flight movements. The take-off and landing site situ-
ated on the Eastern shore of Walter’s Rock is marked as Point 5 in Fig. 1 
(54◦23′03.8 N, 005◦33′24.1”W). While the VP surveys were performed 
from the opposite shoreline, this location was chosen as it allowed 
maximum coverage of the survey area given the 500 m limit from the 

Fig. 1. Map showing the study location within the Narrows, a dynamic tidal channel located in Strangford Lough, Northern Ireland, UK. a) Overview map showing 
the study area within the Narrows, highlighted by the red circle. b) Location of the survey area, including vantage point (VP) locations (Points 1–4) with associated 
elevation above sea level shown in metres, and UAV take-off location (Point 5) on the eastern shore of the Narrows. The island symbol within the survey (not to scale) 
represents the location of Walter’s Rock. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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pilot. Finally, the UAV camera was calibrated in the laboratory using a 
standard checkerboard method and video sequences post-processed 
using MATLAB (R2017b; Mathworks). 

2.4. UAV video data processing to detect/count seabirds 

A custom-built Graphical Unit Interface (GUI) named TernTagger was 
built in MATLAB and was used to count seabirds on a frame-by-frame 
basis. For this, the video file was opened in the GUI, and individual 
frames were reviewed by a video observer to manually ‘tag’ seabirds, 
thereby creating a mark which generated an associated species ID and a 
local coordinate (accurate to ~1 m, compared to VP distribution data 
which had lower precision as distances were assigned to 100 m bands). 
Where possible, seabirds were tagged when passing the centroid of the 
UAV’s Field of View (FOV) to reduce parallax error (Supplementary 
Fig. 1). As it was possible to easily go between frames or speed up or slow 
down the video using the GUI, this facilitated accurate marking of even 
highly mobile individual birds. All three tern species present at the site 
were marked as ‘terns’, and other species of birds identified where 
possible. Sun glare (recorded on a scale of 1–3, with 1 being “None” and 
3 being “Severe”) was apparent in some of the surveys but did not 
prevent the video observer from marking moving birds, such as the 
terns, as they would move in and out of sun glare areas, allowing species 
identification. Following the tagging, video local coordinates of tagged 
seabirds were converted to latitude and longitude in decimal degrees 
with the associated timestamp using the instantaneous recorded GPS 
position of the UAV, its flight altitude, and the camera calibration 
information. 

2.5. Post-processing of seabird counts accounting for transect overlap 

In order to limit possible “double-counting” of seabird sightings, we 
accounted for line transect overlap (10%) using the following approach. 
Rather than simply identifying (and excluding) bird locations within the 
10% overlap region between two lines, we constructed a spatiotemporal 
approach using the evolving area of coverage (Supplementary Fig. 2). 
Birds were only excluded if they were located within the overlap be-
tween the current field of view (FOV) and the combined area of the 
previous fields of view up to an along-track distance (d) behind the 
centre of the current FOV (Supplementary Fig. 2). This distance, d, was 
set to be equal to the diagonal dimension of the current FOV determined 
by the UAV camera and altitude (Supplementary Fig. 2). This method is 
preferable to a fixed time delay to allow for the variable flight-speed of 
the UAV that is dependent upon the wind. It can be seen that the com-
bined area of overlaps is irregular in shape at the end of each transect 
line, ensuring that double-counting is minimised in these regions where 
the UAV changes velocity. 

2.6. Using the UAV to calibrate VP graduated rangefinders 

Graduated rangefinders used by land-based VP observers (see section 
2.2 above) at 20 m elevation were calibrated by undertaking UAV flights 
using the DJI Phantom 3. For these calibration flights, the UAV was 
flown at 10 m altitude to 7 calibration points at various distances from 
the land-based observers (610 m, 700 m, 800 m, 900 m, 950 m, 1000 m, 
1100 m). At each point, the UAV hovered to allow land-based observers 
enough time to ensure graduated rangefinders were correct. 

2.7. Statistical analysis 

While all seabird species observed at the site were recorded, terns 
Sternidae (common terns, Arctic terns and Sandwich terns Sterna sand-
vicensis) accounted for a significant proportion of both the VP and UAV 
observations (0.86 and 0.83 respectively; Supplementary Table 3 and 
Supplementary Table 4). Therefore, all analyses herein are focused on 
these three tern species combined (all of which were in flight) 

(Supplementary Table 5 and Supplementary Table 6). 
To investigate ‘tidal coupling’ i.e. where the abundance and distri-

bution of seabirds varies with tidal state/the ebb-flood tidal cycle 
(Zamon, 2003), we calculated an average flood/ebb index for each 
concurrent survey conducted (taking into account the start and end time 
of each survey method). Flood/ebb index (hereafter referred to as tidal 
index) is a cyclic variable defined over each flood/ebb cycle based on 
tide height. Values of:  

• > 0 - < 0.5 represent the ebb tidal current.  
• > 0.5 - < 1 represent the flood tidal current.  
• 0 and 1 represent high water slack.  
• 0.5 represents low water slack. 

Tidal state refers to the tidal phase, where ebb at the study site is a 
southeast flow and flood is a northwest flow of water. 

To compare the abundance of terns detected by each survey method, 
the number of individuals counted within VP surveys were modelled as a 
function of those counted within UAV transects using a generalised 
linear mixed effect model (GLMM) with a Poisson distribution in the R 
package lme4 (Bates et al., 2015). The response variable was the VP 
survey count of terns. The explanatory variable UAV count was included 
as a fixed effect, while survey ID and elevation of the VP were treated as 
random effects. To assess the absolute agreement between the number of 
terns counted by both survey methods within the same survey the 
intraclass correlation coefficient (ICC) and its associated uncertainty 
was calculated using a two-way random effects model based on single 
unit rating in the R package irr (Gamer et al., 2019) and the results were 
interpreted following the guidelines given by Koo and Li (2016). 

To investigate the potential influence of detection parameters upon 
the abundance of terns detected by each survey method, the number of 
individuals counted within VP surveys and UAV transects were 
modelled separately as a function of explanatory variables using GLMMs 
with a Poisson distribution in the R package lme4 (Bates et al., 2015). 
The response variable was the VP/UAV survey count of terns. The 
explanatory variables tidal state (included as a factor with two levels: 
ebb or flood), cloud cover, sea state (to account for the potential impacts 
of sea surface roughness on the detectability of seabirds), glare, VP 
observer ID, and elevation of the VP were included as fixed effects, while 
survey ID was treated as a random effect. The explanatory variables VP 
observer ID and elevation of the VP were not included within the UAV 
model described above as these variables relate only to the VP data. 
Collinearity of fixed effects was assessed by calculating variance infla-
tion factors (VIF), ensuring each was below three, which was the case for 
all fixed effects apart from cloud cover within the UAV model as an 
interaction was found between cloud cover and glare. As a result, cloud 
cover was removed from this GLMM. Model selection was performed 
using a multi-model inference approach, based upon Akaike Information 
Criterion (AIC) values (Burnham and Anderson, 2002). All combinations 
of explanatory variables were tested in a series of 65/8 candidate models 
for the VP/UAV data respectively (Supplementary Table 7 and Supple-
mentary Table 8). The model with the lowest AIC score was selected as 
the most parsimonious model based on the delta of the corrected 
Akaike’s Information Criterion (ΔAICc), calculated using the dredge 
function in the MuMIn package in R (Barton, 2020). Parameter estimates 
and 95% confidence intervals were then presented for the most parsi-
monious models. If 95% confidence intervals did not overlap with zero, 
this supported the importance of the explanatory variable. 

To compare counts of terns detected by each survey method as a 
function of the tidal cycle, the number of terns were modelled separately 
as a function of tidal index using generalised additive models (GAMs) 
using glmmTMB (Brooks et al., 2017). Poisson distributions were used as 
non-linear relationships were expected given the Strangford Lough 
Narrows has previously been shown to present a tidally predictable 
foraging location for surface-foraging terns (Lieber et al., 2019). Tidal 
index was included as a cyclical, non-linear explanatory variable and the 
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number of knots was constricted to seven to avoid over-fitting. Differ-
ences in tern abundance across tidal index were tested for significance 
(p < 0.05) using chi-squared tests for each survey method (VP surveys 
were modelled separately for each observer). VP observers were 
modelled separately to ensure a one-to-one comparison with terns 
detected by UAV transects over the tidal cycle. All modelling was per-
formed in R (version 4.0.1, R Development Core Team) using the lme4 
(Bates et al., 2015), glmmTMB (Brooks et al., 2017) and MuMIn (Barton, 
2020) packages for GLMMs and the mgcv package for GAMs (Wood, 
2017). Data collected from all VP survey elevations were included 
within these analyses. 

To assess the similarity in tern distributions gained from the VP 
surveys and UAV transects, we estimated 50% and 95% utilization dis-
tributions (UDs; Fieberg and Kochanny, 2005) for terns detected by each 
survey method during different tidal states (ebb or flood currents). Only 
data collected from concurrent surveys when at least one land-based 
observer was positioned at higher VP survey elevations (18 and 20 m 
above sea level, n = 62) were used to remove any bias due to elevation. 
Additionally, if both VP observers were positioned at higher elevations 
for the same survey (n = 12), only data from the VP observer located at 
the highest elevation were retained to ensure a one-to-one comparison, 
i.e. comparing one VP observer with one UAV transect survey. Kernel 
density estimation was conducted using the R package adehabitatHR 
(Calenge, 2006). Kernel density estimates were evaluated on 800 m ×
500 m grids using a cell size of 1 m2 and smoothing parameters (h) were 
estimated using the ad hoc ‘href’ method. The extent of overlap between 
the distribution of terns detected by VP surveys (UD1) and UAV transects 
(UD2) during different tidal states were estimated using the kerneloverlap 
function to give Bhattacharyya’s affinity (BA), which ranges from 0 (no 
overlap) to 1 (complete overlap) (Bhattacharyya, 1943; Fieberg and 
Kochanny, 2005). 

3. Results 

3.1. Comparing seabird counts 

There was a positive relationship between the number of terns 
counted within VP surveys and the number of terns counted within UAV 
transects (Fig. 2; Table 1) (also see Supplementary Fig. 3). The absolute 
agreement between the number of terns counted by both survey 
methods within the same survey was also found to be good (i.e. 

intraclass correlation coefficient was >0.75; Table 2) (Koo and Li, 
2016). The positive relationship between the number of terns counted 
within VP surveys and the number of terns counted within UAV tran-
sects was not linear, with generally higher numbers of terns detected by 
the UAV than the land-based observers, particularly when the number of 
terns detected in the survey area was >20 (Fig. 2). The number of terns 
detected within concurrent VP surveys and UAV transects were more 
closely matched at lower abundances (Fig. 2). When considering the 
potential influence of explanatory variables upon the abundance of terns 
detected by VP surveys, the most parsimonious model selected sea state, 
tidal state and observer ID as having the greatest explanatory power 
(Table 3; Supplementary Table 7; Supplementary Fig. 4). 95% confi-
dence intervals supported the importance of each of these explanatory 
variables (Table 3) (apart from ‘Sea State1,3’ which represents the 
comparison between sea state 1 and 3 on the Beaufort scale). There was 
no support for cloud cover, elevation of the VP and surface glare in 
explaining any variation in the number of terns counted during VP 
surveys. When investigating the potential influence of explanatory 
variables upon the abundance of terns detected by UAV surveys, the 
most parsimonious model selected sea state and tidal state as having the 
greatest explanatory power (Table 3; Supplementary Table 8; Supple-
mentary Fig. 5). 95% confidence intervals supported the importance of 
each of these explanatory variables (Table 3) (apart from ‘Sea State1,3’ 
which represents the comparison between sea state 1 and 3 on the 
Beaufort scale). There was no support for surface glare explaining any 
variation in the number of terns counted during UAV transects. 

3.2. Comparing ecological relationships 

Significant variation was observed in the number of terns across the 
tidal index (ebb-flood cycle) for each survey method (Table 4; Fig. 3). A 
similar pattern in tern numbers across tidal index was observed from the 
VP surveys and UAV transects, with the highest number of terns 
observed during flood tides (Fig. 3; Supplementary Fig. 6). 

3.3. Comparing the distribution of terns 

The distribution of terns detected within VP surveys and UAV tran-
sects indicated that the highest tern density occurred within the near- 
shore shallows during the ebb tide (Fig. 4c) and extended into the 
main channel during the flood tide (Fig. 4b). However, tern distributions 
recorded by UAV transects showed more of a difference between the ebb 
and flood tide (Fig. 4; Supplementary Fig. 7 and 8). The overlap between 
VP survey and UAV transect 50% UDs was lower than 95% UDs (BA, 
Table 5). Overlap indices also indicated better concordance between the 
95% distribution estimates made for all data and 95% distribution es-
timates made during the flood tide compared to 95% distribution esti-
mates made during the ebb tide (Table 5). The overall similarity 
between 95% UDs during the ebb tide (BA = 0.69) were moderate, while 
95% UDs made during the flood tide (BA = 0.83) indicated a high 
overall similarity (BA >0.8). 

Fig. 2. Generalised linear mixed effect model (GLMM) outputs showing a 
positive relationship between the number of terns counted within vantage point 
surveys and the number of terns counted within concurrent UAV transects (±
SE). The red line represents a 1:1 linear relationship. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
Parameter estimates showing the relationship between the number of terns 
counted within vantage point surveys and the number of terns counted within 
uncrewed aerial vehicle transects with standard error and 95% confidence in-
tervals. Effects are slope estimates from the model and important variables have 
95% confidence intervals that do not overlap with zeros, shown in bold.     

95% confidence intervals 

Parameter Effect se Lower Upper 

Intercept 1.924    
UAV tern count 0.037 0.003 0.032 0.041  
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4. Discussion 

This study takes a crucial first step towards evaluating the effec-
tiveness of UAVs for use in EIAs. We analysed concurrent VP surveys and 
UAV transects to quantitatively compare at-sea abundance and distri-
bution of surface-foraging seabirds in flight within a tidal stream envi-
ronment. By comparing these two survey approaches, we found that 
both yielded comparable counts of seabirds at the site of interest, while 
fine-scale distributions differed. The UAV offered a better perspective of 
seabird habitat use in relation to visible surface-flow features and could 
therefore be regarded as beneficial to assess seabird-environment in-
teractions during EIAs. Within this study no behavioural disturbance 
(such as evasive flying/diving behaviours away from the UAV or alarm 
calling) was recorded by land-based observers. Therefore, it is not 
thought that the abundances/distributions reported were affected by the 
presence of the UAV. 

4.1. Comparing seabird counts 

Our results show that both VP surveys and UAV transects perform 

similarly when recording counts of surface-foraging terns. A positive 
relationship was found between the number of terns counted within VP 
surveys and the number of terns counted within UAV transects. How-
ever, generally higher numbers of terns were detected by the UAV, 
particularly when the number of terns present within the survey area 
was higher; this means the number of terns detected by both survey 
methods were more closely matched at lower abundances (<20 birds). 
This difference could be driven by potential “double-counting” of sea-
birds within UAV transects due to overlap between UAV parallel transect 
lines and seabird movement across transect lines (see point 1 below). 
However, it is also likely that the difference in numbers counted at 
higher abundances (20–70 birds) was due to the flux of birds entering 
the survey area at once. This may suggest that particular attention 
should be paid to ensure appropriate training measures are in place for 
VP observers to ensure accurate counts of birds where abundance may 
be high, or birds are in flocks (see points 3 and 4 below) whilst at the 
same time recording distance and bearing information. Previous studies 
comparing counts of ground nesting seabirds also indicate that observers 
in the field typically record lower counts than those from UAV surveys 
(Hodgson et al., 2016). This difference is usually due to ground nesting 
birds being obscured due to the oblique angle of observers; the oblique 
angle of land-based observers could also explain the difference in counts 
seen within our study (see point 3 below). However, there is also evi-
dence indicating the converse is possible in ground nesting birds (i.e. 
where counts of ground nesting birds made by observers in the field are 
higher than those from UAV surveys) (Chabot et al., 2015). As we do not 
know the true number of birds within the survey area during each sur-
vey, given the differences in the number of birds counted by both 
methods at higher tern abundances, it is not possible based on this single 
study to determine which survey method may be more reliable. There-
fore, we outline below many potential reasons for the differences be-
tween VP and UAV counts of surface-foraging terns within this study in 
the hope that these will aid the selection of survey techniques for EIAs 
and provide a better understanding of the application of UAVs for use in 
EIAs.  

1. “ Over- and -undercounting”. In environments where individuals are 
targeting a feature and are therefore not moving at random, it is 
possible that individuals may be counted more than once within UAV 
transects due to the overlap in the field of view between UAV parallel 
transect lines. Conversely, mobile individuals which move out from 
the area covered by the UAV may be missed and not be counted. 
Although we implemented a spatiotemporal approach to account for 
the potential “double-counting” of seabirds within UAV transects 
(overall 337 sightings were removed within the 10% overlap of 
transects) this approach did not account for seabird movement (for 
example, terns actively foraging within the survey area) and how this 

Table 2 
Intraclass correlation coefficient estimates with 95% confidence intervals and F test values based on a single unit rating, 2-way random effects model measuring 
absolute agreement in the number of terns counted within vantage point surveys and the number of terns counted within concurrent UAV transects.    

95% confidence intervals F Test With True Value 0  

Intraclass Correlation Lower Upper Value df1 df2 Sig 

Single measures 0.86 0.76 0.91 14.9 37.1 110 <0.01  

Table 3 
Final parameter estimates showing the relationships between the number of (A) 
terns counted within vantage point surveys and (B) terns counted within 
uncrewed aerial vehicle transects and supported explanatory variables with 
standard error and 95% confidence intervals. Effects are slope estimates from 
the most parsimonious models (Supplementary Table 7 and Supplementary 
Table 8 respectively). Important variables have 95% confidence intervals that do 
not overlap with zeros, shown in bold.     

95% confidence intervals 

Parameter Effect se Lower Upper 

(A) Vantage Point 
Intercept 2.453    
Observer 0.176 0.049 0.080 0.273 
Tidal State Flood 0.554 0.158 0.245 0.864 
Sea State1,2 ¡1.557 0.339 ¡2.221 ¡0.893 
Sea State1,3 0.061 0.208 − 0.347 0.468  

(B) UAV 
Intercept 2.505    
Tidal State Flood 0.453 0.185 0.0895 0.816 
Sea State1,2 ¡1.833 0.404 ¡2.625 ¡1.042 
Sea State1,3 − 0.220 0.248 − 0.706 0.265 

Sea State1,2 represents the comparison of two sea state levels: 1 and 2 on the 
Beaufort scale. 
Sea State1,3 represents the comparison of two sea state levels: 1 and 3 on the 
Beaufort scale. 

Table 4 
General-additive model (GAM) outputs of the number of terns recorded across the tidal index from vantage point surveys and UAV transect surveys. Vantage point 
survey counts are modelled separately for each observer; VP1 = Observer 1 and VP2 = Observer 2. Differences in tern counts across tidal index were tested for 
significance (p < 0.05) using chi-squared tests (χ2) for each survey method. Estimates, standard errors (Std. error), z-values (z), estimated degrees of freedom (EDF), p- 
values, adjusted R-squared and the deviance explained are also shown.  

Number of terns recorded across tidal index from: Estimate Std. error z EDF χ2 p-values R2 (adj.) Deviance explained (%) 

UAV transect surveys 2.975 0.031 94.81 5.891 369.9 < 0.01 0.539 61.5 
VP surveys, VP1. 2.776 0.034 81.64 5.844 216.3 < 0.01 0.377 51.4 
VP surveys, VP2 2.765 0.039 70.09 5.958 307.8 < 0.01 0.66 72.8  
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may introduce duplicates into the UAV data. It is important to note 
that the level of overlap/decision to include overlap between parallel 
transect lines should be based upon the scale of surveys and required 
spatial coverage (within this study overlap between UAV transect 
lines was deemed necessary to ensure complete coverage of the 
survey area).  

2. False positives and perception bias. It is possible that UAV counts 
were generally higher than VP survey counts due to potential false 
positives. It is also important to note that only one reviewer manually 
assessed the UAV video, therefore we did not quantify this possible 
perception bias. Although not the case in this study, it is important to 
note when counting birds from digital imagery that the birds may be 
difficult to distinguish from the whitecaps created by hydrodynamic 
features present within dynamic nearshore environments, resulting 
in false positives (Edney and Wood, 2021; Thaxter and Burton, 
2009).  

3. ‘Viewshed’. The difference in the counts of terns recorded by VP 
surveys and UAV transects could be due to the difference in 
perspective of the survey area (i.e. UAVs give a ‘bird’s eye view’ of 
the survey area while land-based observers view the survey area at 
an oblique angle). As terns were often aggregated in high numbers 
within the survey area, birds may have occluded one another, 
resulting in terns being missed by land-based observers.  

4. VP scan protocol. Traditionally VP surveys consist of systematic 
scans of the survey area carried out by observers with the aim of 
recording all birds within the scanned area, within a snapshot in 
time. However, as terns were often aggregated in high numbers in 
this study, VP observers may have missed terns flying through/ 
transiting through the area when focused on counting or calculating 

the bearing and distance of seabirds. This would not have been the 
case for the UAV. 

We also investigated the potential influence of detection parameters 
upon the abundance of terns detected by each survey method. Parameter 
estimates showing the relationship between the number of terns counted 
within VP surveys and explanatory variables highlighted the particular 
importance of VP observer, sea state, and tidal state on the number of 
terns predicted by the model. The importance of VP observer could be 
expected as VP observers did not follow the UAV or each other when 
scanning the survey area, meaning observers may be focused on 
different areas at different times. Similar differences in the number of 
birds counted by observers have previously been found (Spear et al., 
2004; Van Der Meer and Camphuysen, 1996) and the importance of 
including the identity of each observer within modelling of observation 
data to account for variation between individuals has previously been 
highlighted (Robbins, 2017). Therefore, EIAs may also benefit from trial 
VP surveys as common practice, such surveys should be undertaken by 
multiple observers at the same time and elevation to ensure that counts 
are comparable before fieldwork commences. 

Parameter estimates showing the relationship between the number 
of terns counted within UAV transects and explanatory variables high-
lighted the particular importance of sea state and tidal state on the 
number of terns predicted by the model. As this was also the case for the 
VP surveys it is important to understand how these variables may in-
fluence the count of terns by both survey methods. Sea state is usually an 
important parameter influencing the ability of land-based observers to 
detect birds on the water (Waggitt et al., 2014). However, due to the 
‘bird’s eye view’ of UAV transects it is possible that that some species/ 
individuals may be difficult to distinguish from the whitecaps created by 

Fig. 3. Response curves (± SE) from generalised additive models (GAMs) showing predicted tern counts detected by each survey method with raw data overlaid a) 
UAV transects (n = 64), b) VP 1/Observer 1 (n = 63), and c) VP 2/Observer 2 (n = 48) as a function of tidal index (0/1 = High water slack, 0.5 = Low water slack). 
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hydrodynamic features present within high-energy environments (as 
mentioned in point 2 above). A higher number of terns were recorded at 
lower sea-states for both methods; however, it is important to 
acknowledge the small sample sizes associated with sea state (Supple-
mentary Fig. 4 and Supplementary Fig. 5). The influence of tidal state 
upon the number of terns counted by both survey methods is less intu-
itive as tidal state itself is not known to influence the ability of either 
survey method to detect birds. Therefore, it is likely that the importance 
of tidal state on the counts of terns by both VP surveys and UAV transects 
is due to its influence on the number of terns using the site over the ebb- 
flood tidal cycle (changes in tern abundance and distribution with the 

ebb-flood cycle are discussed in sections 4.2 and 4.3 below). Yet, as 
certain tidal states have been found to correlate with high numbers of 
terns (i.e. during the flood tide) it is possible that this increase in in-
dividuals resulted in biases in the number of terns counted by both 
survey methods as previously discussed. Although sea surface glare has 
the potential to impact counts of seabirds carried out by both VPs and 
UAVs, glare was not highlighted as an important variable when 
explaining the number of terns counted by either of these survey 
methods in this study. Within our study, glare was present within 4.7% 
of VP surveys (covering a small portion of the survey area), while a 
larger percentage of the UAV transects were influenced by glare (53%). 
However, when looking at the UAV video, UAV frames always contained 
an area free from glare. The glare was limited to one corner of the frame, 
such that birds could be reliably identified with the human eye as they 
moved between areas of glare and areas unaffected by glare. 

4.2. Comparing ecological relationships 

Comparison of counts recorded by VP surveys and UAV transects 
showed a similar pattern in the number of terns recorded across the ebb- 
flood tidal cycle (tidal index), with the highest number of terns observed 
during the flood tide. This is an important comparison in terms of 
assessing the effectiveness of UAVs for use in EIAs as it indicates that 
although the number of terns recorded often differed by survey method, 
the same ecological relationships were detected when investigating site 
use of terns. Previous studies carried out within the Strangford Lough 
tidal channel also recorded the highest number of surface-foraging terns 

Fig. 4. Utilization distributions (UDs) of terns 
detected within concurrent vantage point surveys 
(blue) and UAV transects (light blue) at 95% (dotted 
lines) and 50% (solid lines) carried out when vantage 
point observers were at high elevations (18 and 20 m 
above sea level, n = 62). a) tern distributions detec-
ted within all surveys, b) tern distributions detected 
during the flood tide and, c) tern distributions 
detected during the ebb tide. (For interpretation of 
the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Table 5 
Estimated overlap (Bhattacharyya’s affinity, BA) between tern utilization dis-
tributions (UDs) estimated using data from concurrent vantage point surveys 
(UD1) and UAV transects (UD2), for data collected from concurrent surveys when 
at least one land-based observer was positioned at higher VP survey elevations 
(18 and 20 m above sea level) and for flood and ebb tides. For each UD, we give 
kernel smoothing parameters (h) estimated using the ad hoc ‘href’ method.  

UD(%) UD1 UD2 BA h 

50 VP, terns UAV, terns 0.38 19.44 UD1, 24.93 UD2  

VP, terns, Flood UAV, terns, Flood 0.42 21.74 UD1, 24.81 UD2  

VP, terns, Ebb UAV, terns, Ebb 0.22 19.82 UD1, 29.20 UD2 

95 VP, terns UAV, terns 0.79 19.44 UD1, 24.93 UD2  

VP, terns, Flood UAV, terns, Flood 0.83 21.74 UD1, 24.81 UD2  

VP, terns, Ebb UAV, terns, Ebb 0.69 19.82 UD1, 29.20 UD2  
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during the flood tide (Lieber et al., 2019). 

4.3. Comparing the distribution of terns 

Finally, we assessed the similarity of tern distributions detected by 
VP surveys and UAV. The distribution of terns detected, particularly by 
UAV transects indicated that the highest tern density occurred within 
the near-shore shallows during the ebb tide and extended into the main 
channel during the flood tide. This change in foraging location by terns 
is consistent with the change in discrete hydrodynamic features present 
within the survey area in relation to the tidal cycle. There are shallow 
upwelling regions generated by Walter’s Rock during the ebbing tide 
and pronounced shear lines extending towards the mid-channel gener-
ated during peak tidal flows, a pattern previously found by Lieber et al. 
(2019). The differences found here in distributions estimated from the 
VP surveys and UAV transects are likely to be due to differences in the 
accuracy of seabird locations obtained by both survey methods. VP 
surveys within this study mapped the location of seabirds according to 
distances estimated from land-based observers using graduated range-
finders; this introduces error as birds are effectively assigned to distance 
bands (Supplementary Fig. 8; Borchers et al., 2010). Another potential 
reason for this difference in distribution (particularly the difference seen 
in Fig. 4c) is that increasing distance is likely to influence the ability of 
land-based observers to correctly assign an individual or group of birds 
into distance bands. As a result, VP surveys may benefit from the use of 
UAV transect surveys as an additional survey tool to identify fine-scale 
distributions of seabirds. The use of a laser rangefinder such as a Vec-
tor Ornithodolite also has the potential to increase the precision of 
seabird positions obtained from VP surveys (Largey et al., 2021); how-
ever, this method requires validation for use in tidal stream environ-
ments (Cole et al., 2019). 

4.4. General UAV performance and applicability 

While VP surveys and UAV transects were found to produce similar 
counts of surface-foraging seabirds in flight, future EIAs of tidal stream 
developments may benefit from the use of UAV transects carried out 
alongside traditional VP surveys to accurately identify the fine-scale 
distributions of seabirds or to assess seabird interactions with the 
environment and/or renewable energy structures. Fine-scale spatial in-
formation is crucial for assessing the potential for interactions between 
seabirds and developments (for example, precise spatial information of 
seabirds is required to assess collision risk with tidal stream turbine 
developments; Isaksson et al., 2020). Not only this but the increased 
accuracy of spatial data recorded within UAV transects also allows 
seabird distribution to be directly linked to fine-scale hydrodynamic 
features. This is of particular importance as seabirds may target specific 
hydrodynamic features associated with tidal stream turbines, which in 
turn has the potential to increase the risk of underwater collision with 
moving parts of tidal stream turbines. UAVs also have mission repeat-
ability and produce a permanent record of the imagery collected, 
allowing data to be referred back to in future. 

Despite these potential benefits, the application of UAVs for use in 
EIAs will not be without challenges. It is important to consider condi-
tions which may prevent the collection of useful UAV-derived data, such 
as, strong winds, precipitation, and high sun angles. High sun angles 
may introduce sun glint into the UAV imagery, particularly during the 
middle part of the day, making targets of interest hard to identify. It is 
also important to consider the costs associated with using UAVs, such as 
the initial cost of the UAV (including additional batteries and upgraded 
camera if required), the cost of a UAV pilot and the costs associated with 
the subsequent time spent identifying and counting birds from the UAV 
imagery (within this study the time taken to process UAV imagery was 
approximately 10 h and 40 min). However, the additional costs associ-
ated with the use of UAV surveys alongside traditional VP surveys may 
be justified where more detailed data on seabird distributions/fine scale 

habitat use are required. Another important consideration when 
assessing UAVs as an effective tool for the impact assessment of tidal 
stream developments is the size of the area of interest as UAVs are 
limited by battery time and the obligation to maintain direct unaided 
visual contact with the UAV, known as visual line of sight (VLOS; up to 
500 m horizontally from the remote pilot). However, it is possible to 
seek permission of the CAA to extent or go beyond this range. 

The last consideration that should be taken into account when 
evaluating UAVs as an effective tool for EIAs carried out within near-
shore tidal stream environments are the types of data that can be 
collected. UAVs are not able to record seabird behavioural data within 
transect surveys; instead, the collection of behavioural data would 
require separate ‘focal follows’ / UAV hovers (Lieber et al., 2021). This is 
an important consideration when choosing appropriate survey tech-
niques for impact assessments within tidal stream environments as the 
collection of behavioural information (diving behaviour specifically) is 
crucial for the assessment of collision risk with underwater turbines. 
Lastly, it is crucial to recognise that survey techniques and technology 
used must be chosen based on the seabird species or family of interest as 
VP surveys are able to carry out species identification to a higher degree 
of accuracy. Within this study, the UAV flight height and integrated 
camera used for data collection did not allow for the reliable identifi-
cation of birds on the water surface (i.e. auks Alcidae). Therefore, UAV 
flight height would have to be lowered in order to give the desired pixel 
resolution for all birds on the water surface to be identified. However, 
flying the UAV at lower altitudes may cause disturbance and affect 
species’ behaviour (e.g. flights and alarm calling) (Brisson-Curadeau 
et al., 2017; Rush et al., 2018). Alternatively, using a UAV with a higher 
resolution camera would also increase the opportunity to identify birds 
on the water surface. 

5. Conclusion 

As marine renewable energy developments continue to become more 
widespread, it is increasingly important to understand the potential role 
emerging technologies/platforms may play in environmental impact 
assessments or improving understanding of how seabirds may interact 
with installed renewable installations. Uncrewed aerial vehicles are 
increasingly being used in ecological studies and although there is a 
growing body of research assessing the efficiency of UAV-based 
methods, there is a disconnect between research and the use of UAV- 
derived data for ecological management and monitoring. This in part 
is due to a lack of clear guidelines on how to plan and successfully 
execute UAV flights, but also due to a lack of knowledge as to the 
capability of this emerging platform to provide data comparable to 
traditional land-based methods. This is also due to a lack of under-
standing within some research communities about the EIA process and 
types of information that may be required. 

To our knowledge, this study provides the first comparison of at-sea 
abundance and distribution of seabirds within a tidal stream environ-
ment collected from concurrent VP and UAV surveys. Therefore, this 
study takes a crucial first step towards understanding the effectiveness of 
UAVs compared to traditional VP surveys for its use in EIAs within dy-
namic nearshore tidal stream environments. This study suggests that it is 
methodologically and logistically feasible to assess seabird abundance 
and distribution within nearshore areas using off-the-shelf UAVs (e.g. 
DJI consumer models). However, the selection of specific survey tech-
niques should firstly be based upon the specific needs of a monitoring 
task and questions to be addressed. For example, when delivering broad 
site characterisation, VP surveys or boat/aircraft line transects may be 
appropriate due to the limited area UAVs are able to cover (due to 
battery time) and the ability of VP surveys to more easily identify in-
dividuals to species-level. However, if the questions of interest are to 
understand fine-scale habitat associations, particularly at operating 
devices, then UAVs may be more appropriate due to greater spatial 
resolution of data and ability to gather data across multiple conditions, 
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seasons, times of day without costs/resources becoming prohibitive. 
Lastly, it is important to recognise that survey techniques should be 
chosen based on the target species and its behaviour, the area of 
importance, survey length, project budget, and the surrounding condi-
tions of the proposed anthropogenic development. With the above 
considerations in mind, we suggest, in agreement with Callaghan et al. 
(2018) and Lyons et al. (2019), that UAVs present a useful comple-
mentary tool, rather than an alternative approach to traditional land- 
based surveys for use in EIAs. 
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