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ABSTRACT
Background. Hoary bats (Lasiurus cinereus) are among the bat species most commonly
killed by wind turbine strikes in the midwestern United States. The impact of this
mortality on species census size is not understood, due in part to the difficulty of
estimating population size for this highlymigratory and elusive species. Genetic effective
population size (Ne) could provide an index of changing census population size if other
factors affecting Ne are stable.
Methods.We used theNeEstimator package to derive effective breeding population size
(Nb) estimates for two temporally spaced cohorts: 93 hoary bats collected in 2009–2010
and an additional 93 collected in 2017–2018. We sequenced restriction-site associated
polymorphisms and generated a de novo genome assembly to guide the removal of
sex-linked and multi-copy loci, as well as identify physically linked markers.
Results. Analysis of the reference genome with psmc suggested at least a doubling of
Ne in the last 100,000 years, likely exceeding Ne = 10,000 in the Holocene. Allele and
genotype frequency analyses confirmed that the two cohorts were comparable, although
some samples had unusually high or low observed heterozygosities. Additionally, the
older cohort had lower mean coverage and greater variability in coverage, and batch
effects of sampling locality were observed that were consistent with sample degradation.
We therefore excluded samples with low coverage or outlier heterozygosity, as well as
loci with sequence coverage far from the mode value, from the final data set. Prior to
excluding these outliers, contemporary Nb estimates were significantly higher in the
more recent cohort, but this finding was driven by high values for the 2018 sample year
and low values for all other years. In the reduced data set, Nb did not differ significantly
between cohorts. We found base substitutions to be strongly biased toward cytosine to
thymine or the complement, and further partitioning loci by substitution type had a
strong effect on Nb estimates. Minor allele frequency and base quality bias thresholds
also had strong effects on Nb estimates. Instability of Nb with respect to common data
filtering parameters and empirically identified factors prevented robust comparison
of the two cohorts. Given that confidence intervals frequently included infinity as the
stringency of data filtering increased, contemporary trends in Nb of North American
hoary bats may not be tractable with the linkage disequilibrium method, at least using
the protocol employed here.
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INTRODUCTION
Bats provide valuable ecological services in the form of pollination, seed dispersal, and
predation of pest insects, yet are under-studied as a group and many species are under
threat (Voigt & Kingston, 2016). In the United States, some bat populations face new and
potentially existential threats from white-nose syndrome (Frick et al., 2010) and industrial
wind turbines (Kunz et al., 2007; Cryan, 2011; O’Shea et al., 2016; Frick et al., 2017). While
the scale of bat mortality associated with wind energy development is clearly large relative
to plausible estimates of reproductive rates (Frick et al., 2017), the most susceptible taxa
are among the most poorly censused. Hoary bats (Lasiurus [Aeroestes] cinereus) comprise
at least a third of annual bat fatalities occurring at wind turbines in the United States
and Canada (Smallwood, 2013; Thompson et al., 2017). This highly migratory species is
commonly found in late summer and autumn at most wind facilities where carcass
monitoring occurs, disproportionately so relative to regional bat diversity (Arnett &
Baerwald, 2013). Infrared imaging has revealed a strong behavioral component of turbine
strikes, in which individuals repeatedly approach wind turbine surfaces and moving blades
(Horn, Arnett & Kunz, 2008; Cryan et al., 2014a). While fatality reduction strategies are
being developed (e.g., Smallwood & Bell, 2020;Weaver et al., 2020), there is an urgent need
to understand population trends concurrent with wind energy development, as our limited
understanding can exclude neither extinction nor stable co-existence as eventual outcomes
(Frick et al., 2017).

Censusing hoary bat populations is challenging not only for their nocturnal behavior
and dispersed roosting in trees but also their extrememigratory habits juxtaposed with long
periods of inactivity in cryptic hibernation sites (Kunz & Parsons, 2009; O’Shea & Bogan,
2003). Tagged individuals have been found to travel thousands of linear kilometers in
short periods (Weller et al., 2016), and males and females live apart in disparate geographic
regions for much of the year (Findley & Jones, 1964; Hayes, Cryan & Wunder, 2015). Given
these challenges, a number of studies have employed genetic methods to illuminate past
demographic history and current genetic structure of hoary bat populations (Korstian, Hale
& Williams, 2015; Russell et al., 2015; Sovic, Carstens & Gibbs, 2016; Pylant et al., 2016).
Several studies included estimates of genetic effective population size (Ne), a theoretical
parameter of population-genetic models that describes how life-history traits affect the
sampling variance of allele frequencies. Ne originates from the classic work of SewallWright
and is conceptualized as the size of an ideal random-mating population that would have
the same sampling variance (i.e., genetic drift) as the real population of interest, and at
model equilibrium is less than the census population size (Nc) due to various biological
sources of reproductive variance. From an appropriate sample of genetic variation, the
population Ne can be estimated and the effects of predictor variables empirically evaluated
(Charlesworth, 2009).
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Various approaches to Ne estimation have been proposed, which are differentially
impacted by nonequilibrium conditions in the biological populations to which they are
applied. Some estimators specify particular components of allele sampling variance such as
due to inbreeding or the breeding population size (Nb) (Wang, Santiago & Caballero, 2016).
Methods are further distinguished by the extent to which the estimate is ‘contemporary’ or
compounds effects of past generations. ComparingNe estimated by differentmethodologies
can therefore be fraught and for most methods and realistic sample sizes, confidence
intervals are often large or unbounded (Do et al., 2014). Estimating contemporary trends in
Ne is particularly challenging, as large samplesmust be genotyped at numerous loci and over
a time interval sufficient to reveal informative genetic change (Tallmon et al., 2012; Luikart
et al., 2020). Fortunately, continued gains in sequencing methodology and throughput
have advanced the prospects of contemporary Ne estimation. Reduced-representation
sequencing is efficient for genotyping thousands of variant sites for dozens of individuals,
particularly using restriction digest protocols (‘‘RADseq’’) (Peterson et al., 2012). Here we
apply this technology to investigate temporal trends in contemporary Nb in hoary bats, as
a proxy for temporal change in Ne generally or Nc.

Two disjunct American populations of hoary bats of unknown divergence time are
presumed to be genetically isolated in the present day: a North American population
spanning much of North America into southern Mexico, and a disjunct South American
population (Shump Jr & Shump, 1982; Cryan, 2003; Baird et al., 2015; Russell et al., 2015).
For this analysis, we assume these two continental populations are independent with respect
to contemporary Ne but not ancestral Ne. L. cinereus has also colonized archipelagos such
as the Hawaiian and Galapagos Islands (Koopman & McCracken, 1998; Baird et al., 2015;
Russell et al., 2015; Ziegler, Howarth & Simmons, 2016). Our focus here is on hoary bats that
migrate through the central United States, which we presume represent the majority of the
North American population and also the group most impacted by turbine strikes (Cryan,
Stricker & Wunder, 2014b). In this work, we retain the genus classification of Lasiurus
following Novaes et al. (2018), although this placement is not material to our results.

Previous genetic studies indicate that the North American population of hoary bat is
unstructured (Korstian, Hale & Williams, 2015; Pylant et al., 2016; Sovic, Carstens & Gibbs,
2016), but also suggest a large plausible interval for contemporary Ne or Nb. The latter is
important because the dynamic range over which Ne estimators are useful varies (Do et al.,
2014;Wang, 2016). For example, Sovic, Carstens & Gibbs (2016) previously estimated a large
Ne for L. cinereus, approximately 8.3E+5 based on coalescent modeling of site frequency
spectra of single nucleotide polymorphisms (SNPs) and in the context of an explicit model
of recent population growth. This value was intermediate between those of its congeners
the silver-haired bat (L. noctivagans, Ne = 1.9E+5) and the eastern red bat (L. borealis,
Ne = 1.6E+6). Ne estimates modeled by Pylant et al. (2016) from mitochondrial and
microsatellite data were comparable to Sovic et al. for L. borealis (3.6E+6) but were more
than an order of magnitude lower for L. cinereus (6.1E+4). In contrast, Korstian, Hale
& Williams (2015) could not resolve Nb for L. cinereus, using the linkage disequilibrium
(LD) method as modified by Waples & Do (2010). They obtained negative estimates with
microsatellitemarkers, which implies that the scale of the sampling correction implemented
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by that method was greater than the effect of Nb itself, i.e., that L. cinereusNb was too large
to estimate. On the other hand, those authors estimated a Nb of only 1,546 from a large
sample of L. borealis.

To investigate temporal trends in Nb, we used archived samples with temporal breadth
likely exceeding the generation time of L. cinereus, defined as the expected time between the
birth of a female and the birth of her first female progeny (Charlesworth, 1994) and usually
much less than expected lifespan. We performed RADseq genotyping for two temporal
cohorts initially consisting of 93 individuals, one set of caracasses collected from 2009–2010
and a second set from 2017–2018, a mean difference of eight years. This strategy maximized
the available size and balance of each cohort, with size limited primarily at the earlier time
period, without making individual cohorts overly broad. This temporal scale is certainly
less than the 5–10 generations estimated by Tallmon et al. (2010) and Tallmon et al. (2012)
to be required to detect a 10% shift from a stable growth parameter (λ= 1). More recently,
Luikart et al. (2020) found that with 5,000 SNPs the LD method could detect differences
in Nb on the order of 25% when the true value was on the order of hundreds, but with
larger samples than used here. Thus, our analysis may have relatively low power to detect
trends in Nb at this time scale, but a proactive strategy is prudent and there remains a need
to establish a clearer baseline for future genetic monitoring (Schwartz, Luikart & Waples,
2007). For example, Luikart et al. (2020) established a framework for inferring Nb trends by
linear regression over a time series, to which the current work could eventually be adapted.

Nb was estimated from biallelic SNPs using the LD method, which has been shown to
be among the most accurate and robust of available methods for estimating contemporary
Nb (Do et al., 2014; Wang, 2016). Several additional considerations guided our use of
the LD method to estimate Nb, the first of which is its wide dynamic range. While Nb
estimates are more precise at lower values of true Nb (Waples & Do, 2010) and simulations
of pre-genomic data sets indicated that Nb above 1,000 were not easily differentiable
(estimates were often infinite Waples & Do, 2010), Wang (2016) showed that typical
genomic SNP datasets could achieve accurate estimation for true Nb well above 10,000.
The LD method is also only slightly biased by large, sudden changes in Nb (Wang, 2016),
which might potentially apply to L. cinereus given current turbine-strike estimates (Frick et
al., 2017). While the LD method effectively integrates Nb across preceding generations in
a weighted fashion, the most recent generation should predominate if mating is random
and generations are discrete and non-overlapping (Waples, 2005; Wang, 2016). Random
mating is suggested by an overall lack of genetic structure in L. cinereus (Korstian, Hale &
Williams, 2015; Pylant et al., 2016; Sovic, Carstens & Gibbs, 2016) and no direct evidence
of nonrandom mating has been reported to our knowledge. However, the assumption
that generations do not overlap is probably universally violated in bats. We must therefore
assume that opportunistic samples of sufficient size have convergent demographic structure
and therefore deviate from the second assumption to a similar degree. Thus,whilewe refer to
estimates as Nb, we assume they reflect the temporal mean of Ne and Nb of the overlapping
generations within each cohort based on the results of Waples, Antao & Luikart (2014).
Such estimates tend to be downwardly biased due to a temporal Wahlund effect (Waples,
Antao & Luikart, 2014).
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The LD method assumes marker loci are not physically linked, i.e., they are on separate
chromosomes or effectively unlinked due to recombination. Failure to account for physical
linkage with large SNP data sets substantially underestimates true Nb (Wang, 2016) and
causes confidence intervals to be estimated too narrowly (Waples, Larson & Waples, 2016).
We therefore assembled a reference genome to place anonymous loci onto genomic
scaffolds. The reference genome also aided the detection of sex-linked and multicopy
loci, and was achieved at relatively low cost with current scaffolding technologies. Note,
the number of chromosomes inherently limits the LD method regardless of whether loci
are anonymous or not, but this limitation was tangible only for very small chromosome
numbers (approximately four or less) in simulations by Waples, Larson & Waples (2016),
whereas the haploid chromosome number of L. cinereus is 14 (Baker & Patton, 1967).
Waples, Larson & Waples (2016) also found a relatively modest benefit of 4,000 loci over
1,000 loci, suggesting that quality may be preferred over quantity when many thousands
of SNP loci have been ascertained.

While we found data processing to have a strong effect on Nb, estimates were initially
higher in the 2017–2018 cohort than the 2009–2010 cohort. However, removal of loci with
outlier coverage patterns and samples with outlier observed heterozygosity (Ho) largely
eliminated the apparent difference between cohorts. Furthermore, we identified effects
attributable to sample condition that limited interpretation of our results. We found that
the most stringent filtering of samples, loci, and SNP genotyping parameters produced
unbounded Nb estimates, which may ultimately preclude trend analysis for hoary bat Nb
even if issues related to sample condition are resolved.

MATERIALS & METHODS
Sampling
Samples consisted of carcasses found dead at wind turbines, aggregated from diverse
monitoring activities, and taxonomically verified, labeled, and stored by the US Fish and
Wildlife Service (USFWS). Samples were stored frozen in chest freezers without defrost
or thaw cycles, although the operational temperature was not recorded. All samples
were collected from wind-energy sites in Indiana merely due to USFWS administrative
boundaries, which has no expected bearing on study outcomes. After reviewing the number
of samples available by collection year, two cohorts were identified that were sufficiently
represented for analysis, 2009–2010 and 2017–2018. Two-year cohorts were chosen in
order to maximize both sample size and sample balance. Samples within two-year cohorts
are presumed to be separated by substantially less than a generation whereas the period
of seven to nine years between cohorts is presumed to be substantially greater than the
generation time of the species based on data for bats generally, as we are not aware of
explicit generation time estimates for hoary bat. Hoary bats become sexually mature in
their first year and reproductive females typically bear two pups per litter (range 1–4;
Shump Jr & Shump, 1982; Cryan et al., 2012), investing a large amount of available energy
in offspring (Racey & Entwistle, 2000). On the other hand, maximum lifespan of L. cinereus
could plausibly exceed ten years (Wilkinson & South, 2002) and early onset of sexual
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maturity does not necessarily entail early reproductive success. On balance, a generation
time of 2–4 years seems reasonable to assume given current understanding of reproductive
phenology in this species (Cryan et al., 2012).

Samples from 2010, 2017, and 2018 were assigned distinct sample codes by the USFWS to
designate batches obtained from specific localities (File S1), which have been anonymized
here for privacy. As sample condition at discovery may have varied systematically by batch
based on the frequency of surveys at each site, or variable storage or transit conditions prior
to receipt by the USFWS, we investigated whether batch effects were evident among these
sets (see ‘Results’). We excluded 2009 samples from single-year analysis because relatively
few were available and site codes had not been assigned at that point.

DNA extraction
Wing tissue clips were removed from frozen samples by the USFWS and shipped in 95%
ethanol to the Molecular Ecology Laboratory, US Geological Survey (USGS), Fort Collins
Science Center. Genomic DNAwas extracted fromwing tissue using an ammonium acetate
protocol modified from the Gentra PureGene kit (Qiagen Inc.) for use with small amounts
of tissue and solutions made in house. Genomic DNA was quantified using a broad range
dsDNA assay kit on a qubit fluorometer (Life Technologies).

Tissue for genome sequencing was obtained from an adult female L. cinereus
opportunistically collected through a regional public health organization in Fort Collins,
Colorado on 9 September 2019. Blood was drawn into an EDTA blood collection tube
within 12 h post mortem and cold-shipped to MedGenome, Inc. for specialized extraction
of high-molecular weight genomic fragments and linked read sequencing. The voucher
specimen from which this genome sequence derived is currently stored at −80 ◦C at the
USGS Fort Collins Science Center.

RAD sequencing
RAD sequencing libraries were generated for 96 samples from each cohort. Genomic DNA
was digested with the restriction enzymes Spe1 and Sau3A1. The 20 µL double-digest
reaction consisted of 1 µg genomic DNA (13 µL at a concentration of 77 ng/µL), 2 µL
10X T4 DNA Ligase Buffer (New England BioLabs), 1 µL Spe1 (New England BioLabs),
1 µL Sau3A1 (New England BioLabs), 0.2 µL BSA (New England BioLabs), and 2.8 µL
water. The digestion was performed at 37 ◦C for 2 h, after which the solutions were heated
to 65 ◦C for 20 min to denature the enzymes. After reverting the solution temperature to
37 ◦C, 1 µL of individually-barcoded P2 adaptor and 1 µL of P1 adaptor were added to
each sample. To minimize the formation of adaptor-dimers the reactions were allowed to
equilibrate to 37 ◦C before the addition of 1 µL T4 DNA Ligase (New England BioLabs).
The adaptors were ligated at 16 ◦C for 30 min and the temperature was then raised to
65 ◦C for 20 min to denature the enzymes. The reactions were then brought up to 100 µL
with the addition of 80 µL water and then cleaned with 0.65X SpriSelect Beads (Beckman
Coulter). The libraries were amplified by PCR in 10 µL reactions consisting of 2 µL cleaned
adaptor-ligated DNA, 1 µL 10X AmpliTaq Gold buffer with MgCl2, 1 µL dNTP mix, 0.2
µL 10 µM forward primer, 0.2 µL 10 µM reverse primer, 0.2 µL AmpliTaq Gold DNA
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Polymerase (Life Technologies), and 5.4 µL water. Nine separate PCRs were performed
(and subsequently pooled) for each sample using the following protocol: 95 ◦C for 10 min;
22 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s; and a final extension at 72 ◦C
for 5 min. The individual samples were grouped into four pooled libraries of 48 samples
each, with each cohort spread across the four pools to mitigate batch effects. Equal volumes
of PCR product were pooled for each set of 48 samples, cleaned using 1X SpriSelect beads,
and run on a PippinPrep (Sage Science) to select fragments in the size range of 300-500
bp. Each size-selected library pool was run on a BioAnalyzer high sensitivity DNA chip
(Agilent Technologies) to validate size and DNA integrity (Fig. S1).

Sequencing was initially performed at the University of Oregon Sequencing Core on the
Illumina HiSeq platform to produce 100-nucleotide reads. A second round of sequencing
was performed by Genewiz to increase coverage of select libraries. Specifically, we repeated
36 samples in two lanes of 15 and 24 samples, respectively; three of the 36 samples were
loaded in both lanes. Due to provider constraints the layout of these latter runs was paired
and 150 nucleotides in length. We did not use the second read and trimmed the first read
to match the original read length. Fastq sequences are available under National Center for
Biotechnology Information (NCBI) BioProject PRJNA604255.

RADseq read filtering and clustering into tags
RADseq reads were visualized with FASTQC (Andrew, 2020) to confirm the restriction
mark and evaluate overall run quality. The initial sequence runs had highly uneven
coverage among samples generally and coverage was lower on average in the older cohort.
Furthermore, the appended indexes that mark the sample of origin could not be scored for
approximately 20% of reads. We were able to recover a fraction of these unassigned reads
using cutadapt (Martin, 2011) by assigning index reads that were one edit distance from an
expected six-base index to the corresponding sample, provided the edit distance was three
or more to all other expected indices. Nonetheless, a substantial fraction of samples was
insufficiently represented for analysis and the average coverage of the 2009–2010 cohort
was approximately half that of the 2017–2018 cohort. It was to address this coverage deficit
that a second sequencing run was ordered for low-coverage samples, as described above,
which occurred after the initial clustering of reads into loci.

Reads were modulus trimmed with bbduk (Bushnell, 2020) using a modulus of five.
Exogenous 3′ adapter sequences were identified and trimmed with bbduk with k set to 15
and mink set to 11 (these parameters specify the word sizes used to search for matches
within reads and at read edges, respectively). Bases were quality-trimmed with bbduk using
a Phred-scaled threshold of 15. Reads were force trimmed with bbduk to a maximum of
100 nucleotides to account for the read length difference between the two sets of runs.
Processed reads were first clustered within each sample with vsearch (Rognes et al., 2016)
at 95% (iddef was set to 1). The resulting tags were then pooled across all samples and
reclustered by the same method. Tags found in only one specimen (i.e., a cluster size of
one after the reclustering step) were excluded outright.
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Genome assembly and tag filtering
Linked-read assemblies were performed with the supernova assembly program (Weisenfeld
et al., 2017) and optimized according to the package guidelines. Multiple iterations of
the assembly were performed on the US Geological Survey’s Yeti supercomputer (U.S.
Geological Survey, no date) with the final assembly achieving coverage metrics very
close to recommended targets for mammals (File S2). Raw fastq and scaffolds for each
pseudohaploid assembly are available under NCBI BioProject PRJNA601154. However,
because NCBI policy requires contigs or scaffolds to contain no gaps of 15 bp or more
(National Center for Biotechnology Information, no date), those assemblies are somewhat
more fragmented than the original supernova output, which is available from Cornman
et al. (2021). We used the latter in our analysis because the support for scaffolds in high-
coverage linked-read data should be robust and longer scaffolds are inherently more useful
for our objectives.

Tags were aligned to the genome using BLASTN v. 2.9.0 (Camacho et al., 2009) and
those with multiple strong matches were removed, defined as matches with an alignment
length greater than 90 bases and summed mismatch and gap scores of less than 15. Tags
with no match or a single match that was insufficiently stringent, defined as an alignment
length of 95 or less (100 maximum) or a percent identity of 95 or less, were removed as
well.

Probable autosomes were identified by assessing coverage patterns for scaffolds greater
than 10 Mb in length. We first subsampled up to 2,000,000 reads from each RADseq
sample and then mapped these to the reference genome with bowtie2 (Langmead &
Salzberg, 2012) using the ‘‘end-to-end’’ and ‘‘fast’’ parameter switches. Read depth at
each genomic coordinate was determined with the samtools depth command, excluding
zero-coverage sites and subsampling the output 1:50. From these subsampled values,
coverage at nonzero sites was averaged for each scaffold and the variance among samples
determined. This process identified consistent differences in scaffold coverage attributable
to ploidy (see ‘Results’).

The trajectory of Ne in the North American hoary bat over evolutionary time was
inferred from the assembled reference genome using the pairwise sequentially Markovian
coalescent (psmc) model of Li & Durbin (2011). The psmc software requires a compacted
representation of genome heterozygosity as input, in which successive 100-bp windows
of the reference genome are converted to one of three state characters: no heterozygous
positions occur in the window (‘‘T’’), the window contains at least one heterozygous
position (‘‘K’’), or the window contains one or more ambiguous bases (‘‘N’’). The diploid
consensus was generated by arbitrarily selecting one of the two pseudohaplotypes produced
by the supernova assembly as the reference and converting successive 500-bp windows
of each pseudohaplotype into fasta-formatted pseudoreads. The two pseudoread pools
were then mapped back to the reference with bowtie2 using the ‘‘sensitive’’ and ‘‘end-to-
end’’ parameter switches. Read mappings were retained if they contained fewer than 5%
mismatches and ten gap positions and no secondary alignment was reported, which we
considered correctly aligned. The consensus sequence of the two alignments was generated
with bcftools (Li et al., 2009) after confirming that all variant calls had 1X coverage for
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both the reference and alternative allele and the called genotype was heterozygous. The 64
intervals over which ancestral Ne can be estimated by psmc were pooled according to the
pattern 4 + 25 * 2 + 4 + 6 (see program documentation for details). Confidence intervals
were inferred from 100 bootstrap replicates and relative Ne was scaled using a generation
time of 2.5 years and a per-base mutation rate of 2.0E−8, which is less than the 2.5E−8
used by Sovic, Carstens & Gibbs (2016) but closer to more recent estimates (Milholland et
al., 2017) for human (1.2E−8) and mice (6.0E−9). However, both of those species are
phylogenetically distant from bats, for which no independent estimate is available to our
knowledge.

SNP identification and filtering
Reads were mapped to the initial set of candidate tags with bowtie2 using the ‘‘end-to-end’’
and ‘‘fast’’ settings and variants called and subsequently filtered using the samtools suite (Li
et al., 2009) as described below. Three samples with fewer than one million mapped reads
were removed outright from each cohort, resulting in a maximum sample size of 93 for Nb
estimation (the ‘‘full dataset’’ hereafter). Despite the additional sequencing performed for
older samples, the median number of mapped reads in the older cohort (4.08 million) was
two-thirds that of the newer cohort (5.94 million), which likely impacted the ascertainment
of heterozygotes.

Loci identified as multicopy or failing to map to autosomes at the specified criteria were
removed. An initial list of candidate SNPs was identified with bcftools using the consensus
calling method. Indels were also called in order to subsequently remove SNPs that were
within five positions of those sites but were not otherwise used. We also removed SNP
loci that lacked both heterozygous and homozygous genotypes and enforced a minimum
coverage of at least 5X averaged across all samples, to avoid excessive rates of missing
genotypes. We excluded SNPs with less than the maximum quality score assignable by the
SNP-calling algorithm (QUAL= 999) and required the base-quality bias statistic (‘‘PBQB’’)
to be greater than 0.0001. SNPs with a minor allele frequency (‘‘MAF’’) less than 0.05 in
the total data set were also excluded at this stage. Only a single SNP was retained from a
given tag to avoid pseudoreplication, resulting in an initial set of 12,915 SNPs (File S3).

In addition to these fixed filtering steps, we tested a range of more stringent MAF
and PBQB settings in a combinatorial fashion. This is because there is little prior basis for
selecting from a range of reasonable parameter values, and because there is an inherent
trade-off between SNP quality and SNP quantity. Therefore, an empirical assessment is
needed to determine how sensitive Nb estimates might be to these parameter choices. We
therefore generated twenty different iterations of the data set by pairing four values of PBQB
(0.0001, 0.001, 0.01, 0.1) with five values of MAF (0.05, 0.075, 0.1, 0.15, 0.2). Other bias
metrics important for ‘‘shotgun’’ sequencing (i.e., strand bias, position bias, and mapping
quality bias) are not directly applicable to RAD sequencing and were not evaluated.

Following this base filtering, we performed two empirical checks of the overall data set.
First, individual observed heterozygosity (Ho), calculated as the proportion of heterozygous
genotypes among all called genotypes, was plotted to confirm that samples converged to
similar values with increasing coverage. The Ho of individuals should be similar unless
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the population sample includes highly inbred or admixed individuals. Ho was plotted for
the most stringent combination of PBQB and MAF thresholds to minimize noise from
lower-quality loci. Second, the coverage distribution of all loci was plotted to confirm that
it was approximately normal around a single mode, as expected for single-copy autosomal
loci. Subsequent analyses were performed with either (1) all samples having at least one
million mapped reads (‘‘the full data set’’), or (2) after further excluding samples and loci
deemed to be outliers by these two empirically derived filters (‘‘the reduced data set’’).

Statistical analysis
Population-genetic statistics were calculated with GenePop 4.7 (Rousset, 2008). Allele
frequency spectra were tabulated with the stats function of bcftools. Nb was estimated
with 95% confidence intervals for each cohort using NeEstimator v. 2.1 (Do et al., 2014).
LD statistics were calculated only among retained autosomal scaffolds and not within
them. NeEstimator also implements MAF filtering, but for each cohort separately; we used
a minimum MAF of 0.05 for all NeEstimator runs, which necessarily applies after the
filtering performed with bcftools for the combined data set.

STRUCTURE (Pritchard, Stephens & Donnelly, 2000) was used to evaluate whether any
samples derived from a genetically distinct population. The input data set for this analysis
was filtered using the universally applied filters described above but prior to applying
any PBQB or MAF threshold. Rather, we randomly subsampled 2% of SNPs to obtain
an appropriately sized genotype array for structure analysis (2,449 loci). Monte Carlo
Markov Chain simulations were run for 50,000 steps following a burn-in of 5,000 steps and
with the cluster parameter K specified from 1 to 5. Five simulations with and without an
admixture assumption were performed for each K, with our biological expectation being
that individuals are not admixed based on previous work (Korstian, Hale & Williams,
2015; Pylant et al., 2016; Sovic, Carstens & Gibbs, 2016). Pairwise relatedness was estimated
within each cohort using Coancestry (Wang, 2011).

RESULTS
Reference genome sequencing and ancestral Ne estimation
The L. cinereus reference genome assembly was 2.11 Gb, which compares well with the size
estimated by C value of 2.37 Gb (Smith, Bickham & Gregory, 2013), and had an average
linked-read coverage of 42X (File S2). We obtained 49 total scaffolds greater than 10 Mb,
comprising 82.1% of the total scaffold length. Scaffold N50 was 35.1 Mb and scaffold L50
was 17. As hoary bat has a haploid chromosome count of 14 (Baker & Patton, 1967), at
least some chromosomes are represented by multiple scaffolds and thus not all cases of
pairwise physical linkage can be identified. Autosomal scaffolds were readily distinguished
from sex-linked scaffolds by their variance in coverage in the population sample (Fig. S2).

Analysis of the 45 autosomal scaffolds longer than 10 Mb with psmc indicates that
the Ne of the North American hoary bat population at least doubled from ∼100,000 to
∼10,000 years before present (Fig. 1). The trajectory ofNe is robust as indicated by bootstrap
resampling (pink lines in Fig. 1), yet the actual magnitude of Ne scales with parameter
choices for generation time and particularly mutation rate. Assuming a generation time of
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Figure 1 Diploid genome sequence confirms that ancestral effective population size (Ne) of the hoary
bat (Lasiurus cinereus) has increased over approximately the last 100,000 years. Ancestral Ne was
modeled with psmc (Li & Durbin, 2011). The red line represents Ne values estimated from the sequenced
genome and pink lines represent bootstrapped confidence intervals (100 iterations of computing Ne from
resampled genomic regions). Ne is estimated by psmc for a specified combination of discrete intervals (4
+ 25 * 2+ 4+ 6 was used here, see software documentation for details). Only relative Ne can be inferred
from coalescence simulations, thus the scaling of the axes requires independent estimates of generation
time (g) and mutation rate (µ), which are not known with precision. Here g was set to 2.5 and µwas set to
2.0× 10E−8.

Full-size DOI: 10.7717/peerj.11285/fig-1

2.5 years and an estimated per-base mutation rate of 2.0E−8 suggests that the Ne of North
American hoary bat has exceeded 10,000 in recent evolutionary history. Different values of
these parameters would change the axis scaling but not the shape of the curve itself.

Genetic sexing
Genetic sexing based on sex-linked chromosome dosage (Fig. S2) classified 32 of 93 (34%)
total specimens as male in the 2009–2010 cohort and 45 of 93 (48%)male in the 2017–2018
cohort. Fisher’s exact test of the corresponding contingency table revealed no significant
association between sex ratio and cohort (P = 0.074), but the cumulative number of males
is significantly less than 50% (P = 0.011 by binomial test) suggesting that wind-turbine
mortality may be sex-biased. However, equal sex ratios are not necessarily expected due to
sex-based differences in migration and seasonal distribution (Cryan, 2003; Hayes, Cryan &
Wunder, 2015). We corroborated the dosage-based sexing method by confirming that the
L. cinereus ortholog of a known X-linked gene in bats (NCBI accession KC551897 (Korstian
et al., 2013)) lies on a scaffold inferred by coverage to be X-linked (Fig. S2). Genetic sexing
was performed because carcasses can be difficult to sex morphologically (Korstian et al.,
2013), however the sex ratio of each cohort was not expected to influence Nb because only
autosomal loci were analyzed.

SNP filtering and population-genetic comparison of cohorts
Summary statistics for the two cohorts indicate that they derive from very similar pools of
genetic variation. The two cohorts also had very similar allele frequency spectra overall (Fig.
S3), exhibiting a predominance of low-frequency minor alleles that is consistent with an
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increasing Ne over recent evolutionary history (Fig. 1 and Sovic, Carstens & Gibbs, 2016).
Allele frequencies were not differentiated between cohorts (average FST≈ 0). The newer
cohort had slightly lower diversity than the older cohort based on the Q statistics of Rousset
(2008): expected heterozygosity overall (1-Qinter) was 0.1802 in the 2017–2018 cohort and
0.1897 in the older cohort. The inbreeding coefficient was somewhat higher in the newer
cohort (0.1637) compared with the older (0.1376).

There was an unusually high abundance of C >T transitions, as well as the equivalent
(complement) transitions G >A, constituting almost half of all total substitutions (Fig.
S4). While this profile is not biologically impossible (Weng et al., 2019), it suggests the
possibility that deamination of methylated cytosines and their subsequent conversion
to T in vitro could be occurring (cf. Briggs et al., 2007; Sawyer et al., 2012), which might
accumulate with storage time or correlate with general tissue condition. While overall
diversity at C >T sites was similar to that at other sites (1-Qinter of 0.1817 and 0.1876,
respectively) and the allele frequency spectra of the two classes of variants were very similar
(Fig. S5), out of an abundance of caution we assessed whether Nb differed depending on
the variant class used (see below).

Collectively, the STRUCTURE simulations did not suggest the presence of individuals
of divergent ancestry in either cohort. Multiple genetic clusters were considered more likely
than a single cluster (Fig. S6) only when admixture was assumed (such an assumption
is contrary to previous work Korstian, Hale & Williams, 2015; Pylant et al., 2016; Sovic,
Carstens & Gibbs, 2016). These additional clusters under admixture were only weakly
differentiated from the first and cluster membership was closely related to rates of missing
genotypes. Re-running the admixture model after removing samples with missing data
rates >10% did not fully eliminate the likelihood advantage of K = 2 over K = 1, but the
second genetic cluster was again weakly differentiated from the first (average FST= 0.096)
and constituted a small percentage of total ancestry that was approximately equal across
samples and cohorts (Fig. S6). We also note that higher cluster numbers will usually fit
the data better, all else being equal, solely due to the higher number of free parameters
(Novembre, 2016). We conclude that the two cohorts are comparable and lack substantive
genetic admixture, as did Korstian, Hale & Williams (2015), Pylant et al. (2016), and Sovic,
Carstens & Gibbs (2016) from independent samples collected in different regions of the
continental United States.

For the full data set, the mode value of per-sample coverage (Fig. S7) was approximately
24.8X but deviated from an approximately normal distribution, in that a secondary mode
at the lowest coverage values was seen and a long tail of high-coverage loci was also evident.
The red lines in Fig. S7 represent subjective demarcations between ‘‘expected’’ and ‘‘outlier’’
coverage; both tails were excluded from the reduced data set, resulting in 6,959 available
loci. Plotting Ho versus coverage indicates that samples generally converged to similar Ho

values as coverage increased (Fig. S8), but also reveals outlier samples with either very
low or elevated Ho (Fig. S8). Low Ho was generally associated with low read counts, as
expected, but for unknown reasons these samples were classified exclusively as female (Fig.
S9).This may be a genuine sex-based difference that remains to be explained or it may
indicate that coverage-based sexing fails at low coverage. Samples with elevated Ho did not
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have unusual read coverage but the strongest outliers were all from the older cohort (Fig.
S9). The possibility that sample condition or collection protocol contributed to outlier Ho

in some way is suggested by plotting Ho versus sample source (Fig. S10A). Female samples
from sample set four had a much wider range of Ho than did other sample sets or males
from sample set four. The average GC content of sequence reads from outlier samples was
often elevated relative to the mode value (Fig. S10B), suggesting a biased loss of AT-rich
genomic regions that have lower denaturing temperatures (Mayfield & McKenna, 1978).
Based on these results, we only included samples in the reduced data set that had at least
3 million mapped reads and an Ho of 0.3–0.4 in the full data set (the blue bounding box
in Fig. S8). These empirical thresholds were chosen to mitigate potential outlier effects
rather than to definitively categorize ‘good’ versus ‘bad’ samples. The reduced sample sizes
under these thresholds were 78 for 2017–2018 and 59 for 2009–2010. Population-genetic
statistics of each cohort were more similar for the reduced data set than for the full data set.
In the 2017–2018 cohort, 1-Qinter was 0.1830 and FIS was 0.1454; in the 2009–2010 cohort,
1-Qinter was 0.1887 and FIS was 0.1423. Wang’s coancestry coefficient (Wang, 2002) was
less than 0.05 for all pairs in each cohort in the reduced data set, indicating that no closely
related individuals were sampled.

Nb estimates
Nb point estimates fluctuated severalfold across the range of SNP- and sample-filtering
strategies investigated (Fig. 2). In all cases, however, Nb was significantly higher in the
2017–2018 cohort than the 2009–2010 cohort when the full data set was analyzed. Nb was
more sensitive to MAF, the threshold allele frequency for SNP inclusion, than PBQB, the
base-quality bias threshold. Point estimates ranged from 7,628 to 27,267 (median 10,281.8)
in the 2017–2018 cohort and from 1,950.7 to 3,257 (median 2,574) in the 2009–2010
cohort.

Nb estimates for the reduced data set were again higher in the newer cohort than
the older cohort for all filtering combinations, but point estimates and their confidence
intervals increased for both cohorts. Point estimates ranged from 32,768.7 to infinite in
the 2017–2018 cohort and from 2,801.6 to 21,387.2 (median 7,469.7) in the 2009–2010
cohort. For MAF thresholds of 0.1 or greater, Nb of the old and 2017–2018 cohorts had
overlapping confidence intervals regardless of PBQB.

Stratifying Nb estimates by variant class revealed a strong effect of C >T substitutions
on Nb (Fig. 3). Using only C >T substitutions resulted in lower Nb estimates generally
than if C >T substitutions were excluded, and tended to recapitulate the values obtained
with the full data set. A similar depressive effect of C >T substitutions on Nb could even be
seen within the 2017–2018 cohort itself, i.e., by comparing 2017 and 2018 samples (Fig. 4).
Samples collected in 2017 yielded much lower Nb estimates than samples collected in 2018
when only C >T sites were used, whereas when C >T sites were excluded, the Nb estimates
were similar between the two years.
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Figure 2 Effective breeding population size (Nb) estimates for the 2017–2018 and 2009–2010 Lasiu-
rus cinereus cohorts for tested SNP filtering parameter combinations. (A) Nb is significantly higher for
the 2017–2018 cohort for all combinations of minor allele frequency (MAF) and base-quality bias (PBQB)
for the full data set. (B) Nb is not significantly higher for the 2017–2018 cohort for the reduced data set.
Points lacking upper error bars had a 95% confidence maximum of infinity. Asterisks indicate point es-
timates that were infinite. Horizontal axis labels concatenate PBQB and MAF values, e.g., P0.05M0.1 indi-
cates a PBQB threshold of 0.05 and a MAF threshold of 0.1 were applied.

Full-size DOI: 10.7717/peerj.11285/fig-2

Figure 3 Cytosine to thymine (C> T) variant sites depress effective breeding population size (Nb) es-
timates relative to other substitution classes. (A) Nb estimates by cohort, considering only cytosine to
thymine (C> T) substitutions or their complement, guanine to adenine (G> A). B. Nb estimates by co-
hort after excluding C> T and G> A substitutions. Points lacking upper error bars had a 95% confidence
maximum of infinity. Asterisks indicate point estimates that were infinite. Horizontal axis labels concate-
nate PBQB and MAF values, e.g., P0.05M0.1 indicates a PBQB threshold of 0.05 and a MAF threshold of 0.1
were applied.

Full-size DOI: 10.7717/peerj.11285/fig-3
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Figure 4 A pronounced year effect on effective breeding population size (Nb) is evident in the 2017–
2018 cohort and is alleviated when cytosine to thymine (C> T) sites are excluded. (A) Nb estimates by
year within the new cohort, considering only C> T substitutions or their complement, guanine to ade-
nine (G> A). (B) Nb estimates by year within the new cohort, after excluding C> T and G> A substitu-
tions. Points lacking upper error bars had a 95% confidence maximum of infinity. Asterisks indicate point
estimates that were infinite. Note the change in axis scale between panels. Horizontal axis labels concate-
nate PBQB and MAF values, e.g., P0.05M0.1 indicates a PBQB threshold of 0.05 and a MAF threshold of 0.1
were applied.

Full-size DOI: 10.7717/peerj.11285/fig-4

DISCUSSION
Temporal trends in contemporary effective population size remain challenging to
investigate. Not only are appropriate samples that span the time frame of interest difficult
to acquire and potentially of uneven quality, but sampling noise and the lingering influence
of past Ne can attenuate temporal signals. In this study, we began with relatively large and
balanced cohorts (initial n= 96 each) that in all likelihood were separated by more than the
generation time of L. cinereus (although this cannot be known with certainty). Based on
available archives and realized DNA yield, this was the largest cohort size and longest time
span that we could feasibly analyze for the North American hoary bat. RADSeq libraries
were sequenced on a HiSeq platform in batches of 48 per lane and two additional sequence
lanes were used to adaptively supplement low-coverage samples. The average per-sample
coverage after initial SNP selection and filtering was ∼25X, which seemed appropriate for
our objectives while recognizing that sample coverage remained skewed and was lower on
average in the older cohort. While we anticipated higher rates of missing data and allele
dropout in the older cohort, which can inflate Nb (Wang, 2016), we initially concluded
that frozen carcasses stored on the order of a decade were amenable to high-throughput
RADseq analysis. However, this conclusion was undermined by subsequent observations,
discussed below.

In addition to the challenge of accurately genotyping archived samples, analytical
methods must also have reasonable power to identify changes in Ne or Nb over the time
frame of interest. One initial concern was that the LD method may not resolve point
estimates when Nb is very large, i.e., above circa 5E+4 based on simulations by Wang
(2016), and confidence intervals also increase with the magnitude of the point estimate. It
was therefore a potential outcome of this study that Nb of L. cinereus would be too high
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to resolve significant temporal differences. Indeed, L. cinereus does appear to have had a
large per-generation Ne in recent evolutionary history: at least 1E+4 based on our psmc
analysis and up to 1E+5–1E+6 based on the results of (Sovic, Carstens & Gibbs, 2016). In
the reduced data set, Nb estimates were frequently infinite or had no upper bound. On the
other hand, when estimates were generated by year and with all empirically determined
filters imposed (including the exclusion of C >T sites), values were in the vicinity of 1E+4.
Thus, it remains possible that incremental improvements in methodology and sampling
could resolve L. cinereus Nb with sufficient confidence. As they stand, our results are
intermediate between the low Nb of 1,546 estimated from a large sample of L. borealis
(Korstian, Hale & Williams, 2015) and the higher Ne estimates of Sovic, Carstens & Gibbs
(2016) for that species and L. cinereus.

Overlapping generations are an additional challenge for the LD method, in that
the resulting estimates reflect the harmonic mean of per-generation Ne and breeding
population Nb over the generations represented (Waples, Antao & Luikart, 2014). At
present, the age structure of opportunistically collected hoary bat carcasses cannot be
determined from morphological or molecular data, yet the long lifespan of hoary bats
allows ample age structure to be present. However, the impact of this uncertainty is likely
to be relatively small based on the bias correction proposed by Waples, Antao & Luikart
(2014). For example, if we assume a life span of 12 years for hoary bat and an age of first
reproduction of 2 years, the bias correction is circa 10%. In comparison, data filtering
choices alone altered Nb values by roughly 100% for the full data set. The LD method does
have the favorable property of not exhibiting strong lag or bias in response to changing
Nb and generally performs well for simulated data (Do et al., 2014; Wang, 2016). Wang
(2016) found the sibship frequency method to perform even better than the LD method,
but that method is predicated on actually detecting siblings in samples, which appears
impractical for hoary bat due to a dearth of relatives in carcass samples (Sovic, Carstens
& Gibbs, 2016; Baerwald, Patterson & Barclay, 2014, this study). We therefore believe the
LD method remains the best choice for exploring temporal trends in hoary bat effective
population size.While various authorities have shown that changes in Nc do not necessarily
lead to short-term changes in Nb or Ne (Crandall, Posada & Vasco, 1999), some factors
that decouple the two are not likely to be important for L. cinereus, such as behavioral
inbreeding avoidance that can occur among related individuals in small populations.

Data filtering choices and their effects
SNP genotypes are inferred from alignment characteristics and are unambiguous when
coverage is ample and technical biases are absent. In practice, SNP loci vary greatly in
coverage and bias (Andrews et al., 2016), such that some filtering based on quality metrics
and allele frequencies is usually necessary, the stringency and character of which depends
on study objectives. Filtering steps can be based on general principles that apply per site
(e.g., minimum coverage for genotyping, masking gapped regions of an alignment, and
requiring genotypic diversity or Hardy-Weinberg equilibrium) and by considering the
empirical properties of the data set as a whole (e.g., coverage distributions and inference
of ploidy). However, the best filtering combination for a data set is rarely obvious, in part
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because of tradeoffs between locus number and locus quality. Additionally, factors that
may have relatively minor consequences for quantifying population structure, such as allele
dropout in heterozygotes, may strongly bias the estimation of LD (Wang, 2016). For this
study, we explored filtering parameters implemented in the samtools suite because they are
thorough, scriptable, and standardized with the larger body of work on variant detection
from sequence alignments (Li et al., 2009).

We investigated a range of PBQB values because per-locus P-values are not adjusted for
multiple tests and the initial range of values was wide, with the majority of sites having
values much lower than 0.01 (Fig. S11). We also examined a range of MAF thresholds,
which is an important factor because low-frequency alleles are both more common (Fig.
S3) and inherently subject to more false positives. Do et al. (2014) found low-frequency
alleles to upwardly bias Nb slightly and Waples & Do (2010) found the precision of Nb
over repeated simulations was greatest when MAF was set to 0.1 or above. The latter study
also found modest additional benefit of more than 1,000 loci and confidence intervals were
estimated too narrowly with increasing marker number. Based on these considerations
and given that over 1,500 loci were available in our full data set at the highest stringency
(MAF = 0.2, PBQB = 0.1), we would generally have favored the most stringent filtering
combination. However, substantially fewer loci were included in the reduced data set, such
that intermediate thresholds of MAF and PBQB values may in fact be preferable.

These per-site thresholds indeed had a large effect on Nb estimates, without obvious
convergence patterns that might have guided a final selection. The range of point estimates
across data filtering choices was particularly striking in the full data set relative to confidence
intervals (Fig. 2). Given the observed point-estimate variability, we could not identify a
‘representative’ Nb estimate for each cohort for a given data set. For the full data set, the
effects of data filteringwere largely parallel between the two cohorts and confidence intervals
did not overlap for any parameter combination examined. However, the uncertainty
associated with SNP filtering was exacerbated in the reduced data set and other post hoc
partitions examined.

The empirically derived bounds we placed on the reduced data set reflected a healthy
skepticism of loci with coverage far from the mode value and of samples with Ho far from
the mean as sequencing effort becomes saturating. We do not argue that all excluded loci
and samples are demonstrably ‘bad’ and the remainder demonstrably ‘good’, but we took
a prudent approach and examined how Nb was affected by these outlier categories. For
example, the long tail of high-coverage loci in Fig. S7 could include loci that appear single-
copy in the reference genome assembly but are actually collapsed repeats or segregating
copy-number variants, whereas the secondary mode at the lowest coverage values in that
figure could represent a higher rate of false positives at low coverage or restriction-site
mutations that cause null alleles in some individuals. The clear association of outlier Ho

with cohort and with sample set implies that systematic differences in condition or storage
affected genotype distributions; those effects should be mitigated in the analysis of Nb to
the extent possible.
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Impact of substitution type and sample year on Nb
C >T (and its complement, G >A) was the most frequent substitution type, approximately
twice as common as the transitions T >C and A >G, andNb estimates were strongly affected
by their inclusion. Apparent C >T mutations can accrue in degraded DNA due to cytosine
deamination and subsequent conversion to thymine in vitro (Briggs et al., 2007; Sawyer et
al., 2012), but C >T mutation rates can also be legitimately high in wild populations (Weng
et al., 2019). Furthermore, we lack an independent basis for inferring the ancestral state at
these sites, nor could we discern a difference in allele frequency spectrum or heterozygosity
at these sites. The Sau3A1 enzyme is methylation sensitive and the methylation state of
restriction sites could have changed during storage, but we expect any effect to be random
with respect to allelic variation within affected tags. We also found a large difference in Nb
between 2017 and 2018 sample years, which appeared to be driving the higher Nb estimates
in the newer cohort for the full data set. Since 2010 and 2017 had similar within-year Nb
estimates and removal of C >T sites eliminated the among-year difference (Fig. 4), we
conclude that no demographic trend can be inferred from the full data set at present.

Interpreting Nb estimates
Our main interest in estimating hoary bat Nb was as an index of Nc, since the latter
measure is presently intractable. That a decline in Nc does not inevitably cause a decline
in Ne or Nb has been emphasized (Crandall, Posada & Vasco, 1999), yet the potential of
genetic monitoring for this purpose remains strong (Schwartz, Luikart & Waples, 2007;
England, Luikart & Waples, 2010; Tallmon et al., 2012; Luikart et al., 2020). The eventual
determination of marker recombination rates should expand and strengthen the temporal
inferences that can be made from LD (Hollenbeck, Portnoy & Gold, 2016). Evaluations
of the scale, stability, and trend in Ne and Nb estimators therefore seem prudent for
bat species susceptible to turbine strikes, particularly as carcasses should continue to be
available in large numbers.Nonetheless, we would cast our analysis as primarily descriptive
and not a strong test of the hypothesis of declining Nc, as the variance in Nb attributable to
biological or sampling factors remains unknown for L. cinereus or related species. Variation
in habitat availability, prey availability, weather, or disease are biological factors that could
impact the breeding population size in a given season. Interestingly, changes in regional
hoary bat occupancy have been documented on a time scale similar to that investigated
here (Rodhouse et al., 2019), albeit for an area on the range margin. Those authors found
mean occupancy estimates in the northwestern United States to be initially low in the early
2000’s, relatively high circa 2010, and again declining circa 2018, patterns which appeared
attributable in part to changing landscape characteristics.

Ancestral Ne and relevance to Nb
The trajectory of ancestral Ne inferred from the genome of a single L. cinereus individual
with psmc is on par with the median estimates of contemporary Nb we obtained. For
example, assuming the most rigorous Nb estimates derive from the reduced data set,
further restricted to 2018 samples and excluding C >T sites (Fig. 4), the median value of
15,144.6 lies in themiddle of the range estimated for the most recent historical interval (Fig.
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1). However, the scaling of ancestral Ne is sensitive to the mutation rate and generation
time assumed. We assumed a slightly lower mutation rate (2.0E−8) than the 2.5E−8 used
by Sovic, Carstens & Gibbs (2016) because the former is closer to more recent estimates
for humans and mice (Milholland et al., 2017), however the actual mutation rate for L.
cinereus remains to be determined. While there is no expectation that contemporary
Nb and ancestral Ne should closely match, we find the general concordance of the two
independent measures reassuring given the wide range of values previously estimated for
the genus. Pylant et al. (2016) obtained Ne values most similar to these (6,091, 95% CI
[2,481–89,913]), although they did not find significant support for a population growth
model versus a stable population model. In contrast, Sovic, Carstens & Gibbs (2016) did
find support for a population growth model beginning approximately 150,000 generations
ago, yet the magnitude of Ne (estimated at 8.6E+5) and the scale of increase in Ne over that
period (roughly 50-fold) obtained by those authors were greater than what is suggested by
Fig. 1. A useful follow-up to this genome-based analysis would be to generate comparable
estimates from the South American and various disjunct island populations of L. cinereus,
which might illuminate the timing and demographic consequences of those colonization
events.

Future refinement of the RADseq protocol
The availability of this and other bat genomes (Jebb et al., 2019) allows for further
optimization of RADseq methods and for standardizing sampling and data processing
across a wide range of species. For example, restriction-enzyme digestion can produce
incomparable fragments among individuals if sites frequently differ in methylation state
or if a restriction site lies within an active transposable element. Some repeat classes
are highly amplified in bats (Pritham & Feschotte, 2007) and are likely variable within
and among lineages. In silico digestion of reference genomes could be performed after
masking repetitive and low-complexity regions to identify enzymes with optimal cut-site
distributions with respect to fragment number, fragment size, and consistency across taxa.
It may also be useful to compare the quality of genomic extracts by tissue type, in the
event that organ tissue is better preserved than the epidermal tissue used here. Considering
that relatively large quantities of high-molecular weight genomic DNA are required for
repeatable digestion and size selection, shotgun resequencing may ultimately surpass
RADseq in efficiency as platform throughput continues to increase.

CONCLUSIONS
The full data set suggests that Nb in the hoary bat cohort collected in 2017–2018 was higher
than in the cohort collected in 2009–2010, which is prima facie evidence against massive
hoary bat population decline due to turbine mortality or any other cause. However, data
filtering choices and uncontrollable sample properties had outsized effects on Nb, such that
we have little confidence in cohort-level inferences at present. We recommend continued
genetic evaluation of opportunistically collected samples, but the utility of the approach
will be contingent on an improved understanding of biological and technical sources of
variation.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 19/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.11285


ACKNOWLEDGEMENTS
We are grateful to Lori Pruitt and Scott Pruitt of the US Fish and Wildlife Service for
coordinating the transfer of samples for analysis. Jessica Royer of the Larimer County
(Colorado) Department of Health and Environment provided the carcass of the hoary
bat used for genome sequencing. We thank internal and journal-solicited reviewers whose
efforts greatly improved the manuscript. Any use of trade, firm, or product names is for
descriptive purposes only and does not imply endorsement by the US Government.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Interagency Agreement with the U.S. Fish and Wildlife
Service. The funding agency (USFWS) provided the samples that were analyzed but had
no other role in study design or interpretation. Both the funding agency (USFWS) and the
performing agency (USGS) are within the U.S. Department of the Interior of the federal
government, and it is the statutory mission of the USGS to provide science support to
partners and stakeholders. Thus, the funding mechanism does not constitute a competing
interest.

Grant Disclosures
The following grant information was disclosed by the authors:
Interagency Agreement with the U.S. Fish and Wildlife Service.
(USFWS).
U.S. Department of the Interior of the federal government, and it is the statutory mission
of the USGS to provide science support to partners and stakeholders.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Robert S. Cornman conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.
• Jennifer A. Fike conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.
• Sara J. Oyler-McCance and Paul M. Cryan conceived and designed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Not applicable. No live animals were collected or used at any point by any agency. All
animals were collected as carcasses by government agencies with legal authority to do so.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 20/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.11285


DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

The hoary bat genome sequence is available at NCBI: PRJNA601154. The assembly
was altered to conform with the conventions of that repository. By agency policy, a
separate data release has been created within the ScienceBase repository, which provides
the original output of the assembly program. The repository is available at: Cornman
RS, Fike JM, Oyler-McCance SJ, Cryan PM. 2021. Genetic variation in hoary bats
(Lasiurus cinereus) assessed from archived samples: U.S. Geological Survey data release,
https://doi.org/10.5066/P9VSG54Z.

The raw RADSeq data and sample metadata is available at NCBI: PRJNA604255.

Data Availability
The following information was supplied regarding data availability:

The hoary bat genome sequence is available at NCBI: PRJNA601154.
The raw RADSeq data and sample metadata is available at NCBI: PRJNA604255.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11285#supplemental-information.

REFERENCES
Andrew S. 2020. FastQC. Available at https://www.bioinformatics.babraham.ac.uk/

projects/ fastqc/ (accessed on 05 November 2020).
Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. 2016.Harnessing the

power of radseq for ecological and evolutionary genomics. Nature Reviews Genetics
17(2):81–92 DOI 10.1038/nrg.2015.28.

Arnett EB, Baerwald EF. 2013. Impacts of wind energy development on bats: implica-
tions for conservation. In: Adams RA, Pedersen SC, eds. Bat evolution, ecology, and
conservation. New York: Springer, 435–456
DOI 10.1007/978-1-4614-7397-8_21.

Baerwald EF, PattersonWP, Barclay RMR. 2014. Origins and migratory patterns of bats
killed by wind turbines in Southern Alberta: evidence from stable isotopes. Ecosphere
5(9):1–17 DOI 10.1890/ES13-00380.1.

Baird AB, Braun JK, Mares MA, Morales JC, Patton JC, Tran CQ, Bickham JW.
2015.Molecular systematic revision of tree bats (Lasiurini): doubling the native
mammals of the Hawaiian Islands. Journal of Mammalogy 96(6):1255–1274
DOI 10.1093/jmammal/gyv135.

Baker RJ, Patton JL. 1967. Karyotypes and karyotypic variation of North American
vespertilionid bats. Journal of Mammalogy 48(2):270–286
DOI 10.2307/1378031.

Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, Meyer M, Krause
J, RonanMT, LachmannM, Pääbo S. 2007. Patterns of damage in genomic DNA

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 21/27

https://peerj.com
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA601154
https://doi.org/10.5066/P9VSG54Z
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA604255
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA601154
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA604255
http://dx.doi.org/10.7717/peerj.11285#supplemental-information
http://dx.doi.org/10.7717/peerj.11285#supplemental-information
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://dx.doi.org/10.1038/nrg.2015.28
http://dx.doi.org/10.1007/978-1-4614-7397-8_21
http://dx.doi.org/10.1890/ES13-00380.1
http://dx.doi.org/10.1093/jmammal/gyv135
http://dx.doi.org/10.2307/1378031
http://dx.doi.org/10.7717/peerj.11285


sequences from a neandertal. Proceedings of the National Academy of Sciences
104(37):14616–14621 DOI 10.2307/1378031.

Bushnell B. 2020. BBTools. Available at https:// jgi.doe.gov/data-and-tools/ bbtools/
(accessed on 20 November 2020).

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden
TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10(1):421
DOI 10.1186/1471-2105-10-421.

Charlesworth B. 1994. Evolution in age-structured populations. Cambridge: Cambridge
University Press.

Charlesworth B. 2009. Effective population size and patterns of molecular evolution and
variation. Nature Reviews Genetics 10(3):195–205
DOI 10.1038/nrg2526.

Cornman RS, Fike JM, Oyler-McCance SJ, Cryan PM. 2021.Genetic variation in hoary
bats (Lasiurus cinereus) assessed from archived samples: US Geological Survey data
release. DOI 10.5066/P9VSG54Z.

Crandall KA, Posada D, Vasco D. 1999. Effective population sizes: missing measures and
missing concepts. Animal Conservation 2(4):317–319
DOI 10.1111/j.1469-1795.1999.tb00078.x.

Cryan PM. 2003. Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris)
in North America. Journal of Mammalogy 84(2):579–593
DOI 10.1644/1545-1542(2003)084¡0579:SDOMTB¿2.0.CO;2.

Cryan PM. 2011.Wind turbines as landscape impediments to the migratory connectivity
of bats. Environmental Law 41:355–370.

Cryan PM, Gorresen PM, Hein CD, Schirmacher MR, Diehl R, HusoM, Hayman
DTS, Fricker P, Bonaccorso F, Johnson DH, Heist K, Dalton D. 2014a. Be-
havior of bats at wind turbines. Proceedings of the National Academy of Sciences
111(2):15126–15131 DOI 10.1073/pnas.1406672111.

Cryan PM, Jameson JW, Baerwald EF,Willis CKR, Barclay RMR, Snider EA, Crichton
EG. 2012. Evidence of late-summer mating readiness and early sexual maturation in
migratory tree-roosting bats found dead at wind turbines. PLOS ONE 7(10):e47586
DOI 10.1371/journal.pone.0047586.

Cryan PM, Stricker CA,Wunder MB. 2014b. Continental-scale, seasonal movements
of a heterothermic migratory tree bat. Ecological Applications 24(4):602–616
DOI 10.1890/13-0752.1.

Do C,Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. 2014. NeEstimator
v2: re-implementation of software for the estimation of contemporary effective
population size (ne) from genetic data.Molecular Ecology Resources 14(1):209–214
DOI 10.1111/1755-0998.12157.

England PR, Luikart G,Waples RS. 2010. Early detection of population fragmentation
using linkage disequilibrium estimation of effective population size. Conservation
Genetics 11:2425–2430 DOI 10.1007/s10592-010-0112-x.

Findley JS, Jones C. 1964. Seasonal distribution of the hoary bat. Journal of Mammalogy
45(3):461–470 DOI 10.2307/1377421.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 22/27

https://peerj.com
http://dx.doi.org/10.2307/1378031
https://jgi.doe.gov/data-and-tools/bbtools/
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1038/nrg2526
http://dx.doi.org/10.5066/P9VSG54Z
http://dx.doi.org/10.1111/j.1469-1795.1999.tb00078.x
http://dx.doi.org/10.1644/1545-1542(2003)084\protect \unhbox \voidb@x \hbox {\T1\textexclamdown }0579:SDOMTB\T1\textquestiondown 2.0.CO;2
http://dx.doi.org/10.1073/pnas.1406672111
http://dx.doi.org/10.1371/journal.pone.0047586
http://dx.doi.org/10.1890/13-0752.1
http://dx.doi.org/10.1111/1755-0998.12157
http://dx.doi.org/10.1007/s10592-010-0112-x
http://dx.doi.org/10.2307/1377421
http://dx.doi.org/10.7717/peerj.11285


FrickWF, Baerwald EF, Pollock JF, Barclay RMR, Szymanski JA,Weller TJ, Russell
AL, Loeb SC, Medellin RA, McGuire LP. 2017. Fatalities at wind turbines may
threaten population viability of a migratory bat. Biological Conservation 209:172–177
DOI 10.1016/j.biocon.2017.02.023.

FrickWF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchkoski
CM, Kunz TH. 2010. An emerging disease causes regional population col-
lapse of a common north american bat species. Science 329(5992):679–682
DOI 10.1126/science.1188594.

Hayes MA, Cryan PM,Wunder MB. 2015. Seasonally-dynamic presence-only species
distribution models for a cryptic migratory bat impacted by wind energy develop-
ment. PLOS ONE 10:e0132599 DOI 10.1371/journal.pone.0132599.

Hollenbeck CM, Portnoy DS, Gold JR. 2016. A method for detecting recent changes in
contemporary effective population size from linkage disequilibrium at linked and
unlinked loci. Heredity 117:207–216 DOI 10.1038/hdy.2016.30.

Horn JW, Arnett EB, Kunz TH. 2008. Behavioral responses of bats to working wind
turbines. Journal of Wildlife Management 72(1):123–132
DOI 10.2193/2006-465.

Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenk K, Devanna P,Winkler S, Jermiin
LS, Skirmuntt EC, Katzourakis A, Burkitt-Gray L, Ray DA, Sullivan KAM, Roscito
JG, Kirilenko BM, Dávalos LM, Corthals AP, PowerML, Jones G, Ransome RD,
Dechmann D, Locatelli AG, Puechmaille SJ, Fedrigo O, Jarvis ED, Springer MS,
Hiller M, Vernes SC, Myers EW, Teeling EC. 2019. Six new reference-quality bat
genomes illuminate the molecular basis and evolution of bat adaptations. BioRxiv
DOI 10.1101/836874.

Koopman KF, McCracken GF. 1998. The taxomomic status of Lasiurus (Chiroptera:
Vespertilionidae) in the Galápagos Islands. American Museum Novitates 3243:1–6.

Korstian JM, Hale AM, Bennett VJ, Williams DA. 2013. Advances in sex determi-
nation in bats and its utility in wind-wildlife studies.Molecular Ecology Resources
13(5):776–780 DOI 10.1111/1755-0998.12118.

Korstian JM, Hale AM,Williams DA. 2015. Genetic diversity, historic population size,
and population structure in 2 North American tree bats. Journal of Mammalogy
96(5):972–980 DOI 10.1093/jmammal/gyv101.

Kunz TH, Arnett EB, EricksonWP, Hoar AR, Johnson GD, Larkin RP, StricklandMD,
Thresher RW, Tuttle MD. 2007. Ecological impacts of wind energy development
on bats: questions, research needs, and hypotheses. Frontiers in Ecology and the
Environment 5:315–324
DOI 10.1890/1540-9295(2007)5[315:EIOWED]2.0.CO;2.

Kunz TH, Parsons S (eds.) 2009. Ecological and behavioral methods for the study of bats.
Second Edition. Baltimore: The Johns Hopkins University Press.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nature
Methods 9(4):357–359 DOI 10.1038/nmeth.1923.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 23/27

https://peerj.com
http://dx.doi.org/10.1016/j.biocon.2017.02.023
http://dx.doi.org/10.1126/science.1188594
http://dx.doi.org/10.1371/journal.pone.0132599
http://dx.doi.org/10.1038/hdy.2016.30
http://dx.doi.org/10.2193/2006-465
http://dx.doi.org/10.1101/836874
http://dx.doi.org/10.1111/1755-0998.12118
http://dx.doi.org/10.1093/jmammal/gyv101
http://dx.doi.org/10.1890/1540-9295(2007)5[315:EIOWED]2.0.CO;2
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.7717/peerj.11285


Li H, Durbin R. 2011. Inference of human population history from individual whole-
genome sequences. Nature 475(7357):493–496
DOI 10.1038/nature10231.

Li H, Handsaker B,Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,
Durbin R. 2009. The sequence alignment/map format and SAMtools. Bioinformatics
25(16):2078–2079 DOI 10.1093/bioinformatics/btp352.

Luikart G, Antao T, Hand BK, Muhlfeld CC, Boyer MC, Cosart T, Trethewey B, Al-
Chockhachy R,Waples RS. 2020. Detecting population declines via monitoring
the effective number of breeders (Nb).Molecular Ecology Resources 21(2):379–393
DOI 10.1111/1755-0998.13251.

MartinM. 2011. Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet. Journal 17(1):10–12 DOI 10.14806/ej.17.1.200.

Mayfield JE, McKenna JF. 1978. AT rich sequences in vertebrate DNA. Chromosoma
67(2):157–163 DOI 10.1007/BF00293173.

Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. 2017. Differences between
germline and somatic mutation rates in humans and mice. Nature Communications
8(1):1–8 DOI 10.1038/ncomms15183.

National Center for Biotechnology Information. Prokaryotic and eukaryotic genomes
submission guide. Available at https://www.ncbi.nlm.nih.gov/ genbank/genomesubmit/
(accessed on 19 January 2021).

Novaes RLM, Garbino GST, Cláudio VC, Moratelli R. 2018. Separation of mono-
phyletic groups into distinct genera should consider phyenotypic discontinuities:
the case of Lasiurini (Chiroptera: Vespertilionidae). Zootaxa 4379(3):439–440
DOI 10.11646/zootaxa.4379.3.8.

Novembre J. 2016. Pritchard, stephens, and donnelly on population structure. Genetics
204(2):391–393 DOI 10.1534/genetics.116.195164.

O’Shea TJ, BoganMA. 2003. Monitoring trends in bat populations of the united states
and territories: problems and prospects. U.S. Geological Survey, Biological Resources
Discipline, Information and Technology Report, USGS/BRD/ITR–2003—0003.

O’Shea TJ, Cryan PM, Hayman DTS, Plowright RK, Streicker DG. 2016.Multi-
ple mortality events in bats: a global review.Mammal Review 46(3):175–190
DOI 10.1111/mam.12064.

Peterson BK,Weber JN, Kay EH, Fisher HS, Hoekstra HE. 2012. Double digest RADseq:
an inexpensive method for de novo SNP discovery and genotyping in model and
non-model species. PLOS ONE 7(5):e37135
DOI 10.1371/journal.pone.0037135.

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of Population structure using
multilocus genotype data. Genetics 155(2):945–959.

Pritham EJ, Feschotte C. 2007.Massive amplification of rolling-circle transposons in the
lineage of the bat myotis lucifugus. Proceedings of the National Academy of Sciences
104(6):1895–1900 DOI 10.1073/pnas.0609601104.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 24/27

https://peerj.com
http://dx.doi.org/10.1038/nature10231
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1111/1755-0998.13251
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1007/BF00293173
http://dx.doi.org/10.1038/ncomms15183
https://www.ncbi.nlm.nih.gov/genbank/genomesubmit/
http://dx.doi.org/10.11646/zootaxa.4379.3.8
http://dx.doi.org/10.1534/genetics.116.195164
http://dx.doi.org/10.1111/mam.12064
http://dx.doi.org/10.1371/journal.pone.0037135
http://dx.doi.org/10.1073/pnas.0609601104
http://dx.doi.org/10.7717/peerj.11285


Pylant CL, Nelson DM, Fitzpatrick MC, Gates JE, Keller SR. 2016. Geographic origins
and population genetics of bats killed at wind-energy facilities. Ecological Applications
26(5):1381–1395 DOI 10.1890/15-0541.

Racey PA, Entwistle AC. 2000. Life-history and reproductive strategies of bats. In:
Crichton EG, Krutzsch PH, eds. Reproductive biology of bats. New York: Academic
Press, 363–414.

Rodhouse TJ, Rodriguez RM, Banner KM, Ormsbee PC, Barnett J, Irvine KM. 2019.
Evidence of region-wide bat population decline from long-term monitoring and
bayesian occupancy models with empirically informed priors. Ecology and Evolution
9:11078–11088 DOI 10.1002/ece3.5612.

Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open
source tool for metagenomics. PeerJ 4:e2584 DOI 10.7717/peerj.2584.

Rousset F. 2008. Genepop’007: a complete re-implementation of the genepop
software for windows and linux.Molecular Ecology Resources 8(1):103–106
DOI 10.1111/j.1471-8286.2007.01931.x.

Russell AL, Pinzari CA, Vonhof MJ, Olival KJ, Bonaccorso FJ. 2015. Two tickets to
paradise: multiple dispersal events in the founding of hoary bat populations in
Hawai’i. PLOS ONE 10:e0127912
DOI 10.1371/journal.pone.0127912.

Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S. 2012. Temporal patterns of
nucleotide misincorporations and DNA fragmentation in ancient DNA. PLOS ONE
7(3):e34131 DOI 10.1371/journal.pone.0034131.

Schwartz MK, Luikart G,Waples RS. 2007. Genetic monitoring as a promising tool
for conservation and management. Trends in Ecology & Evolution 22(1):25–33
DOI 10.1016/j.tree.2006.08.009.

Shump Jr KA, Shump AU. 1982. Lasiurus cinereus.Mammalian Species 185:1–5.
Smallwood KS. 2013. Comparing bird and bat fatality-rate estimates among

North American wind-energy projects.Wildlife Society Bulletin 37:19–33
DOI 10.1002/wsb.260.

Smallwood KS, Bell DA. 2020. Effects of wind turbine curtailment on bird and bat
fatalities. The Journal of Wildlife Management 84(4):685–696
DOI 10.1002/jwmg.21844.

Smith JDL, Bickham JW, Gregory TR. 2013. Patterns of genome size diversity in bats
(Order Chiroptera). Genome 56(8):457–472
DOI 10.1139/gen-2013-0046.

Sovic MG, Carstens BC, Gibbs HL. 2016. Genetic diversity in migratory bats: results
from RADseq data for three tree bat species at an ohio windfarm. PeerJ 4:e1647
DOI 10.7717/peerj.1647.

Tallmon DA, Gregovich D,Waples RS, Baker CS, Jackson J, Taylor BL, Archer E,
Martien KK, Allendorf FW, Schwartz MK. 2010.When are genetic methods useful
for estimating contemporary abundance and detecting population trends?Molecular
Ecology Resources 10(4):684–692
DOI 10.1111/j.1755-0998.2010.02831.x.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 25/27

https://peerj.com
http://dx.doi.org/10.1890/15-0541
http://dx.doi.org/10.1002/ece3.5612
http://dx.doi.org/10.7717/peerj.2584
http://dx.doi.org/10.1111/j.1471-8286.2007.01931.x
http://dx.doi.org/10.1371/journal.pone.0127912
http://dx.doi.org/10.1371/journal.pone.0034131
http://dx.doi.org/10.1016/j.tree.2006.08.009
http://dx.doi.org/10.1002/wsb.260
http://dx.doi.org/10.1002/jwmg.21844
http://dx.doi.org/10.1139/gen-2013-0046
http://dx.doi.org/10.7717/peerj.1647
http://dx.doi.org/10.1111/j.1755-0998.2010.02831.x
http://dx.doi.org/10.7717/peerj.11285


Tallmon DA,Waples RS, Gregovich D, Schwartz MK. 2012. Detecting population
recovery using gametic disequilibrium-based effective population size estimates.
Conservation Genetics Resources 4(4):987–989
DOI 10.1007/s12686-012-9689-3.

ThompsonM, Beston JA, EttersonM, Diffendorfer JE, Loss SR. 2017. Factors associated
with bat mortality at wind energy facilities in the United States. Biological Conserva-
tion 215:241–245 DOI 10.1016/j.biocon.2017.09.014.

U.S. Geological Survey.USGS Advanced Research Computing, USGS Yeti Supercom-
puter: U.S. Geological Survey. DOI 10.5066/F7D798MJ (accessed on 25 January
2021).

Voigt CC, Kingston T. 2016. Bats in the Anthropocene. In: Voigt CC, Kingston T, eds.
Bats in the anthropocene: conservation of bats in a changing world. Cham: Springer
DOI 10.1007/978-3-319-25220-9_1.

Wang J. 2002. An estimator for pairwise relatedness using molecular markers. Genetics
160(3):1203–1215.

Wang J. 2011. COANCESTRY: a program for simulating, estimating and analysing
relatedness and inbreeding coefficients.Molecular Ecology Resources 11(1):141–145
DOI 10.1111/j.1755-0998.2010.02885.x.

Wang J. 2016. A comparison of single-sample estimators of effective popula-
tion sizes from genetic marker data.Molecular Ecology 25(19):4692–4711
DOI 10.1111/mec.13725.

Wang J, Santiago E, Caballero A. 2016. Prediction and estimation of effective population
size. Heredity 117(4):193–206 DOI 10.1038/hdy.2016.43.

Waples RS. 2005. Genetic estimates of contemporary effective population size: to
what time periods do the estimates apply?Molecular Ecology 14(11):3335–3352
DOI 10.1111/j.1365-294X.2005.02673.x.

Waples RS, Antao T, Luikart G. 2014. Effects of overlapping generations on linkage
disequilibrium estimates of effective population size. Genetics 197(2):769–780
DOI 10.1534/genetics.114.164822.

Waples RS, Do C. 2010. Linkage disequilibrium estimates of contemporary ne
using highly variable genetic markers: a largely untapped resource for ap-
plied conservation and evolution. Evolutionary Applications 3(3):244–262
DOI 10.1111/j.1752-4571.2009.00104.x.

Waples RK, LarsonWA,Waples RS. 2016. Estimating contemporary effective popula-
tion size in non-model species using linkage disequilibrium across thousands of loci.
Heredity 117(4):233–240 DOI 10.1038/hdy.2016.60.

Weaver SP, Hein CD, Simpson TR, Evans JW, Castro-Arellano I. 2020. Ultrasonic
acoustic deterrents significantly reduce bat fatalities at wind turbines. Global Ecology
and Conservation 24:e01099 DOI 10.1016/j.gecco.2020.e01099.

Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. 2017. Direct deter-
mination of diploid genome sequences. Genome Research 27(5):757–767
DOI 10.1101/gr.214874.116.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 26/27

https://peerj.com
http://dx.doi.org/10.1007/s12686-012-9689-3
http://dx.doi.org/10.1016/j.biocon.2017.09.014
http://dx.doi.org/10.5066/F7D798MJ
http://dx.doi.org/10.1007/978-3-319-25220-9_1
http://dx.doi.org/10.1111/j.1755-0998.2010.02885.x
http://dx.doi.org/10.1111/mec.13725
http://dx.doi.org/10.1038/hdy.2016.43
http://dx.doi.org/10.1111/j.1365-294X.2005.02673.x
http://dx.doi.org/10.1534/genetics.114.164822
http://dx.doi.org/10.1111/j.1752-4571.2009.00104.x
http://dx.doi.org/10.1038/hdy.2016.60
http://dx.doi.org/10.1016/j.gecco.2020.e01099
http://dx.doi.org/10.1101/gr.214874.116
http://dx.doi.org/10.7717/peerj.11285


Weller TA, Castle KT, Liechti F, Hein CD, Schirmacher MR, Cryan PM. 2016. First
direct evidence of long-distance seasonal movements and hibernation in a migratory
bat. Scientific Reports 6:34585 DOI 10.1038/srep34585.

WengM-L, Becker C, Hildebrandt J, NeumannM, Rutter MT, Shaw RG,Weigel D,
Fenster CB. 2019. Fine-grained analysis of spontaneous mutation spectrum and
frequency in Arabidopsis Thaliana. Genetics 211(2):703–714
DOI 10.1534/genetics.118.301721.

Wilkinson GS, South JM. 2002. Life history, ecology and longevity in bats. Aging Cell
1:124–131 DOI 10.1046/j.1474-9728.2002.00020.x.

Ziegler A, Howarth F, Simmons N. 2016. A second endemic land mammal for the
Hawaiian Islands: a new genus and species of fossil bat (Chiroptera: Vespertilion-
idae). American Museum Novitates 3854:1–52 DOI 10.1206/3854.1.

Cornman et al. (2021), PeerJ, DOI 10.7717/peerj.11285 27/27

https://peerj.com
http://dx.doi.org/10.1038/srep34585
http://dx.doi.org/10.1534/genetics.118.301721
http://dx.doi.org/10.1046/j.1474-9728.2002.00020.x
http://dx.doi.org/10.1206/3854.1
http://dx.doi.org/10.7717/peerj.11285

