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Abstract

The effect of underwater anthropogenic sound on marine mammals is of increasing concern. Here we show that humpback
whale (Megaptera novaeangliae) song in the Stellwagen Bank National Marine Sanctuary (SBNMS) was reduced, concurrent
with transmissions of an Ocean Acoustic Waveguide Remote Sensing (OAWRS) experiment approximately 200 km away. We
detected the OAWRS experiment in SBNMS during an 11 day period in autumn 2006. We compared the occurrence of song for
11 days before, during and after the experiment with song over the same 33 calendar days in two later years. Using a quasi-
Poisson generalized linear model (GLM), we demonstrate a significant difference in the number of minutes with detected song
between periods and years. The lack of humpback whale song during the OAWRS experiment was the most substantial signal
in the data. Our findings demonstrate the greatest published distance over which anthropogenic sound has been shown to
affect vocalizing baleen whales, and the first time that active acoustic fisheries technology has been shown to have this effect.
The suitability of Ocean Acoustic Waveguide Remote Sensing technology for in-situ, long term monitoring of marine
ecosystems should be considered, bearing in mind its possible effects on non-target species, in particular protected species.
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Introduction

The last decade has seen an increased awareness of the impacts

of anthropogenic underwater noise on marine mammals. Impacts

have been described for several different sources, including seismic

airguns [1,2], underwater explosions [3], construction and pile

driving [4], acoustic deterrent devices [5], and scientific and

military sonar systems [6–9]. Possible effects include lethal injuries,

short- or long-term hearing damage, and the disruption of normal

behavior, including feeding, mating and communication [10–11].

Disruption of communication behavior may include signal

modifications, for example changes to signal duration, frequency

or amplitude [12–14], as well as changes in signal usage,

repetition, or the cessation of signaling [15,16,13,9]. Changes in

communication behavior have been demonstrated across several

baleen whale species and in response to various noise sources

[17,2,14].

This study investigates the effect of low-frequency pulses on the

occurrence of humpback whale song. The pulses were produced

by an Ocean Acoustic Waveguide Remote Sensing (OAWRS)

experiment, roughly 200 km from the whales. The mobile

OAWRS system was used to image fish shoals over a 100 km

diameter area [18–20].

Male humpback whales (Megaptera novaeangliae) sing long,

complex songs on their breeding grounds [21]. In addition,

humpback whales have been shown to sing on migration [22] and

feeding grounds [23]. On breeding grounds, humpback whales

may alter song production in response to boat noise, seismic

surveys and military sonar [24,8,25,26].

Most published examples of the effects of non-chronic

anthropogenic noise on marine mammals have dealt with sources

within kilometers or perhaps tens of kilometers of the study

animals [9]. Effects over hundreds of kilometers have seldom been

investigated or demonstrated [27].

Arrays of Marine Autonomous Recording Units (MARUs) [28]

gathered low-frequency acoustic data within the Stellwagen Bank

National Marine Sanctuary (SBNMS) in 2006 and from December

2007–May 2010 [29,30]. In autumn 2006, these recordings

happened to coincide with an OAWRS experiment in the Gulf of

Maine, approximately 200 km distant. Initial perusal of the 2006

data indicated that (a) a novel anthropogenic sound was detected in

SBNMS and (b) that humpback whale song in SBNMS occurred

less often, coincident with the sound. Despite having before-during-

after data for 2006, we could not make inference on the effect of the

OAWRS experiment without appropriate control data. Therefore,

we collected recordings from approximately the same place, and at

the same time, in 2008 and 2009, two years when an OAWRS

experiment was not conducted. Thus, despite having what was

initially observational data, we configured a design that allowed us

to make planned comparisons from our data.
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Materials and Methods

Data were collected on arrays of 5–10 MARUs, deployed in

SBNMS during September and October of 2006, 2008 and 2009

(Figure 1). Deployments were carried out in cooperation with

SBNMS staff and deployment sites were surveyed for archaeological

artifacts. Deployment depths ranged from 30–40 m and recorders

sampled continuously at a rate of 2000 Hz. Hydrophones were

connected to a 23.5 dB preamplifier and had a sensitivity of

-168.4 dB re 1 V/mPa. The frequency response was flat (61 dB)

over 55–585 Hz and approximately 63 dB for 585–1000 Hz.

From September 22 to October 6, 2006 we recorded 3 types of

frequency modulated (FM) pulses, centered at 415, 734 and

949 Hz, respectively (Figure 2). Based on frequency range and

duty cycle, these could be positively identified as FM pulses

transmitted as part of an Ocean Acoustic Waveguide Remote

Sensing (OAWRS) experiment, conducted in the Gulf of Maine

during the same time frame [18–20].

For 11 days (September 26 to October 6, 2006) of the 15 day

time series, the frequency of occurrence of these pulses exceeded 1

hour/day (Figure S1). We regarded these 11 days as the ‘‘OAWRS

treatment’’ period. We determined the number of minutes with

humpback whale song/day for a period of 33 days in 2006,

encompassing 11 days prior, during and after ‘‘OAWRS

treatment’’ (Figure S2). Additionally, presence of song was

determined for the same 33 calendar days in 2008 and 2009

(Figures S3, S4).

Spectrograms of sound files were viewed with the software

program XBAT [31]. Data from 1 representative MARU were

carefully examined (aurally and visually) by an experienced analyst

(D Risch). We used 1 MARU, since all simultaneously deployed

MARUs spatially overlapped in their detection range for

humpback whale song, which in our study area can be detected

up to about 30 km [23]. For the purpose of this study, we defined

song as consisting of at least 2 full themes, with gaps not exceeding

10 minutes. All instances of song were logged manually. An

automated template detector in XBAT was used to find instances

with OAWRS FM pulses in the 2006 data and characterize their

temporal occurrence. The detector assessed acoustic similarity

between a data template and possible events by spectrogram cross-

correlation and logged all events exceeding a correlation threshold

of 0.4. Automatically detected events were manually checked to

verify signal presence and signals that were missed by the detector

were logged manually.

Spectral, temporal and received level (RL) measurements of

OAWRS pulses were made in Seewave [32] and Raven Pro 1.4

Figure 1. Map of study area (Stellwagen Bank National Marine Sanctuary, shaded in grey) in relation to the location of the moored
OAWRS source, as deployed on October 1–3, 2006 (Gong et al. 2010). Star indicates approximate OAWRS source location (42.2089 N, 67.6892
W). Dots indicate locations of all MARUs that were used for analysis in 2006, 2008 and 2009. Map projection: Mercator.
doi:10.1371/journal.pone.0029741.g001
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(http://www.birds.cornell.edu/raven, accessed 7 June 2011) using

a Fast Fourier Transform (FFT) length of 512 samples, 75%

overlap and Hanning window, giving a time and frequency

resolution of 64 ms and 4 Hz, respectively. OAWRS signal RLs

(dB re 1 mPa) were calculated by measuring dB RMS over an

event box (approx. 380–440, 710–760, 930–980 Hz; 1 s). Using

the same time and frequency bounds, background noise levels (NL)

were measured 50 ms before or after each event for windows

without the signal. Subsequently, signal-to-noise ratio (SNR) was

calculated by subtracting NLs from signal RLs.

To assess changes in background noise other than the

occurrence of OAWRS pulses in 2006, and as compared to the

two control years, ambient sound levels in frequency bands

covering the frequency range of our recording system (10–

1000 Hz) as well as in the frequency band with most humpback

whale song energy (70–300 Hz, pers. obs.) were measured over the

entire analysis period using a customized Matlab script (LTSpec,

K. Cortopassi, unpublished).

Statistical analysis was conducted using R 2.13.2 [33]. We used

a quasi-Poisson generalized linear model (GLM) with log link to

test the effects of period (11 days: ‘before’, ‘during’, ‘after’) and

year (‘2006’, ‘2008’, ‘2009’) on the number of minutes with

humpback whale song. The OAWRS pulses were recorded only

during 2006. The other years serve as controls in the temporal

equivalent of a BACI design [34]. This was a planned comparison,

as we noted a possible effect in 2006, and collected control data in

2008 and 2009 in response to this possibility.

GLMs assume the independence of response variables. Since we

analyzed a time series of singing behavior of possibly the same

individuals, we checked for residual correlation and plotted

temporal autocorrelation of our data. No temporal correlation of

residuals was found (Figure S5). Tukey contrasts were calculated

from the fitted model to test for differences between periods across

and within years, using the function ‘glht’ in R package

‘multcomp’ [35].

Results

The FM pulses recorded in SBNMS from September 26 to

October 6, 2006 had a bandwidth of roughly 50 Hz, duration of

1 s, and mean center frequencies of 415, 734 and 949 Hz

(Figure 2, Table 1). FM pulses of each center frequency were

recorded every 150 s. FM pulses centered at 415 and 734 Hz were

recorded seconds apart, followed by the pulse centered at 949 Hz

after 75 s. The frequency range and duty cycle of these pulses

allowed their positive identification as pulses produced during the

OAWRS 2006 experiment in the Gulf of Maine [18–20]. A fourth

pulse centered at 1125 Hz was transmitted during this experiment

but was not recorded by our system, which was limited to an

effective recording bandwidth of 1000 Hz.

A total of 83 hours of recordings contained OAWRS pulses

(mean 6 SD: 863 hours/day, n = 11 days), with more than

7 hours of signal occurrence/day from September 27 to October

4, 2006 (see Figure S1). The OAWRS source array was deployed

at the northern flank of Georges Bank (42.2089 N, 67.6892 W),

Figure 2. Characteristics of OAWRS signals recorded on MARUs deployed in the Stellwagen Bank National Marine Sanctuary. (a)
Mean frequency spectrum, showing local peaks at center frequencies (approx. 415, 735, 950 Hz) of recorded OAWRS FM pulses. (b) Spectrogram (FFT:
512, Hanning window, 75% overlap) of the same pulses as shown in (a). Time interval between successive signals was changed for display purposes;
dB scale is relative.
doi:10.1371/journal.pone.0029741.g002
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about 200 km from our bottom-mounted acoustic recorders at the

western edge of Stellwagen Bank (Figure 1) [19]. Signal RLs on

these days ranged from 88–110 dB re 1 mPa (Table 2). Over the

99 days for which data were collected, there were 219.9 hours of

humpback whale song recorded.

The amount of recorded humpback whale song differed

between periods and years. The occurrence of song in the control

years increased steadily across the three test periods; conversely

there was a marked decrease in the occurrence of song in 2006 in

the ‘during’ period, when the OAWRS transmission was recorded,

that was not evident in the control years (Figure 3). While the

‘before’ and ‘after’ periods differed significantly within the years

2008 and 2009 (Figure 3, Tukey contrasts, P,0.001), with more

song recorded in the later period in both years, this increase was

not significant in 2006 (P = 0.2147). In 2006, the ‘during’ period,

(i.e. during the OARWS experiment), was significantly different

from the period ‘after’ (P = 0.0093), with more song recorded later.

The 2006 ‘during period’ was not detectably different from the

period ‘before’ (P = 0.5226). When comparing the ‘during’ period

across years, 2006 differed significantly from 2009 (P = 0.0057).

The same time period did not differ significantly between 2006

and 2008 (P = 0.1842), or between 2008 and 2009 (P = 0.4819).

Yet, overall there was considerably less song recorded in the 11

‘during’ days in 2006 compared to both 2008 and 2009 (Figure 3).

Throughout the whole analysis period, ambient noise levels in the

70–300 Hz and 10–1000 Hz frequency band were within 4 dB of

each other [mean(70–300 Hz) 6 SD: 107.763.8 dB re 1 mPa;

mean(10–1000 Hz) 6 SD: 114.663.5 dB re 1 mPa; n = 99 days].

Discussion

In general, we detected humpback whale song less in our study

area concurrent with OAWRS signal transmissions than at other

times. The RLs of OAWRS pulses approximately 200 km from

the source array were 5–22 dB above ambient noise levels. Pulses

centered at 415 Hz had a mean SNR of 22.3 dB. For pulses at

734 Hz and 949 Hz mean SNR was 5.1 and 8.2 dB, respectively

(Table 2). Signal detection in background noise is usually not at

SNR = 0 dB, but is dependent on a receiver characteristic, the

detection threshold (DT). The difference between SNR and DT is

signal excess (SE). A nominal DT value of 10 dB is well supported

in the current literature [30]. In common practice, the value of

SE = 0 is established at the point of 50% detection probability. In

application to our data, SE for pulses at 415, 734 and 949 Hz was

12.3, 24.9 and 21.8 dB, respectively (Table 2). With SE values

slightly lower than 0 dB the detection of the two FM pulses with

higher center frequencies was probably right on the edge of

perception for humpback whales in our study area. For the pulse

at 415 Hz SE was still relatively low at 12 dB.

Thus, in response to OAWRS FM pulses, with relatively low

SE, male humpback whales either moved out of the study area or

sang less. Our data were collected using passive acoustic

monitoring, so we cannot differentiate between these two options.

However, although very limited, visual data collected in SBNMS

before, during and after the 2006 experiment give more weight to

the second alternative. Several known, sexually mature males (ages

6–28 years) were photographically identified in SBNMS during

the OAWRS experiment. While only two known males were

identified prior to the experiment, four individuals were present in

the area in the ‘‘during’’ period (J. Robbins, pers. comm.). This

suggests that individuals did not leave the area but instead ceased

singing. Multi-year data from SBNMS [36] show that humpback

whale song generally increases at the end of summer and into early

winter, when the whales start to migrate south.

Ambient noise levels over the whole analysis bandwidth (10–

1000 Hz) and in the frequency band with most humpback whale

song energy (70–300 Hz) did not vary dramatically within or

between years. However, the drop in humpback whale song,

recorded during the OAWRS experiment in October 2006, was

not repeated in the two control years (Figure 3). Therefore, our

data provide clear evidence for the reduction of humpback whale

song in response to the reception of OAWRS pulses. We interpret

this decrease as a change in singing behavior by individual whales.

Several large whale species have been shown to stop vocalizing

in response to anthropogenic noise. For example, sperm (Physeter

macrocephalus) and blue whales (Balaenoptera musculus) reacted to

seismic survey activities with silence [15,37]. Blainville’s beaked

whales have recently been shown to avoid ships using active mid-

frequency sonar and decrease the duration of vocal periods during

sonar exercises [9].

Current approaches to management of anthropogenic noise in

marine mammal habitats are predicated on a dose-response

model, based on maximum RLs proximate to the source [11].

However, the alteration of male humpback whale song in SBNMS

in response to sounds with low SE values, received roughly 200 km

from the source, suggests that factors other than absolute RLs must

also be considered when assessing the effects of anthropogenic

sound on marine mammals. Behavioral change in response to low

levels of noise is likely strongly dependent on the behavioral state

of the individual as well as the exposure context (i.e. proximity,

encroachment, novelty, including similarity to other biologically

relevant signals) [38]. Given the short duration of the OAWRS

experiment, the novelty of the FM pulses to humpback whales in

Table 1. Summary of OAWRS FM pulse characteristics
(mean6SD), as measured from spectrograms (FFT: 512
samples, Hanning window, 75% overlap) and waveforms of
MARU recordings on October 1–3, 2006 (sample rate:
2000 Hz, recording depth: 30–40 m).

FM 1 FM 2 FM 3

Signal duration (s) 1.060.1 1.060.1 1.060.1

Low Frequency (Hz) 388.362.0 709.162.7 923.562.8

High Frequency (Hz) 441.262.2 759.363.7 972.463.6

Bandwidth (Hz) 52.862.7 50.263.7 50.563.5

Center Frequency (Hz) 414.867.0 733.667.0 948.766.3

N = 60.
doi:10.1371/journal.pone.0029741.t001

Table 2. Received level (RL) measurements over full
bandwidth of OAWRS FM pulses, ambient noise (NL)
measurements over the same bandwidths, signal-to-noise
ratios (SNR) and signal excess (SE) (mean6SD).

FM 1 FM 2 FM 3

Center Frequency (Hz) 415 734 949

RL Signal (dB re 1 mPa) 110.363.3 88.063.2 89.863.3

NL Ambient (dB re 1 mPa) 88.063.3 82.962.6 81.662.5

SNR = RL-NL (dB) 22.364.8 5.164.0 8.263.9

SE = SNR-10 dB 12.364.8 24.964.0 21.863.9

N = 677.
doi:10.1371/journal.pone.0029741.t002
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SBNMS in particular provides a compelling contextual probability

for the observed effects. In addition, OAWRS pulses overlap with

humpback whale sounds in frequency band (400–900 Hz),

duration (1 second) and signal type (FM). This acoustic similarity

paired with a relatively low signal excess (SE) might have been

another factor driving the observed behavioral or distributional

changes. These findings stress the importance of adding contextual

information to behavioral assessments of noise impacts. They also

illustrate the requirement to both measure and assess background

noise [38].

We initially detected this behavioral effect serendipitously.

However, our ability to make inference on its existence is thanks to

our (within year) before-during-after and (between year) control-

impact design. To our knowledge, no-one has tested for behavioral

effects of sound on whales at distances of greater than tens of

kilometers. Our results suggest that this is an oversight.

In the absence of effective far field source level (SL) data, we

cannot make inference on the effects of the OAWRS signal on

those humpback whales that may have been closer to the sound

source than our study site. Yet, Gong et al. [39] recorded marine

mammal vocalizations, presumably humpback whales, on Georg-

e’s Bank much closer to the source (Figure 1), concurrent with the

2006 OAWRS experiment. However, as these authors present no

data on humpback whales’ use of George’s Bank at any time other

than during this experiment it is difficult to make inference on its

effect on humpback whale behavior at these closer spatial ranges.

The response of individuals can also be variable. In a playback

experiment using low-frequency active (LFA) sonar, Miller et al. [8]

showed that, on average, humpback whale songs were longer

during playback as compared to before or after control periods.

Yet, these authors also noted the cessation of singing by 5 of their

18 focal animals in response to the playback. Due to differences in

behavioral context, location and proximity to the sound source it is

difficult to directly compare our findings to either of the mentioned

studies. However, it is worth noting that plasticity in behavioral

responses is likely to exist on several different levels, including the

individual level.

The current paradigm for assessing effects of anthropogenic

noise is for short-term, short distance experiments, with a focus on

acute events and the absolute level of received sound. Our results

indicate that longer-term, larger scale monitoring of anthropo-

genic sound is also necessary.

Supporting Information

Figure S1 Time series of hourly detections of OAWRS signals

recorded on MARUs deployed in the Stellwagen Bank National

Marine Sanctuary in September/October 2006.

(TIF)

Figure S2 Time series of minutes with humpback whale song

detections in September/October 2006. Plot is split in three panels

representing (a) ‘Before’, (b) ‘During’ and (c) ‘After’ periods. Right

y-axis displays date.

(TIF)

Figure S3 Time series of minutes with humpback whale song

detections in September/October 2008. Plot is split in three panels

Figure 3. Box-and-Whisker plot of minutes/day containing humpback whale song for 33 days ‘before-during-after’ OAWRS FM
pulse transmissions in 2006, and for the same 33 calendar days in 2008 and 2009. Lower and upper bounds of boxes represent lower and
upper quartiles, respectively. Solid lines represent medians and non-filled circles are means. Whiskers represent furthest data points within 1.56
interquartile range (IQR) of the lower and higher quartile, respectively. Filled dots are outliers.
doi:10.1371/journal.pone.0029741.g003
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representing time periods equal to (a) ‘Before’, (b) ‘During’ and (c)

‘After’ periods in 2006. Right y-axis displays date.

(TIF)

Figure S4 Time series of minutes with humpback whale song

detections in September/October 2009. Plot is split in three panels

representing time periods equal to (a) ‘Before’, (b) ‘During’ and (c)

‘After’ periods in 2006. Right y-axis displays date.

(TIF)

Figure S5 (a) Plot of residuals of quasi-poisson GLM model for

OAWRS data. (b) Temporal autocorrelation plot based on

residuals of quasi-poisson GLM model used in OAWRS analysis.

Blue dashed line indicates approximate 95% confidence interval.

(TIF)
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