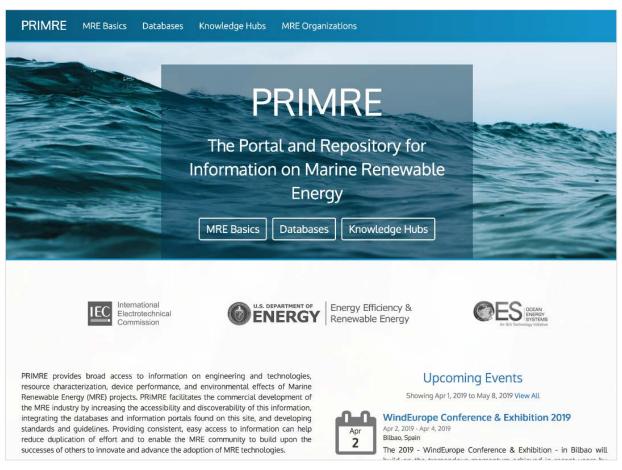


Introducing the New Tethys Engineering Knowledge Base

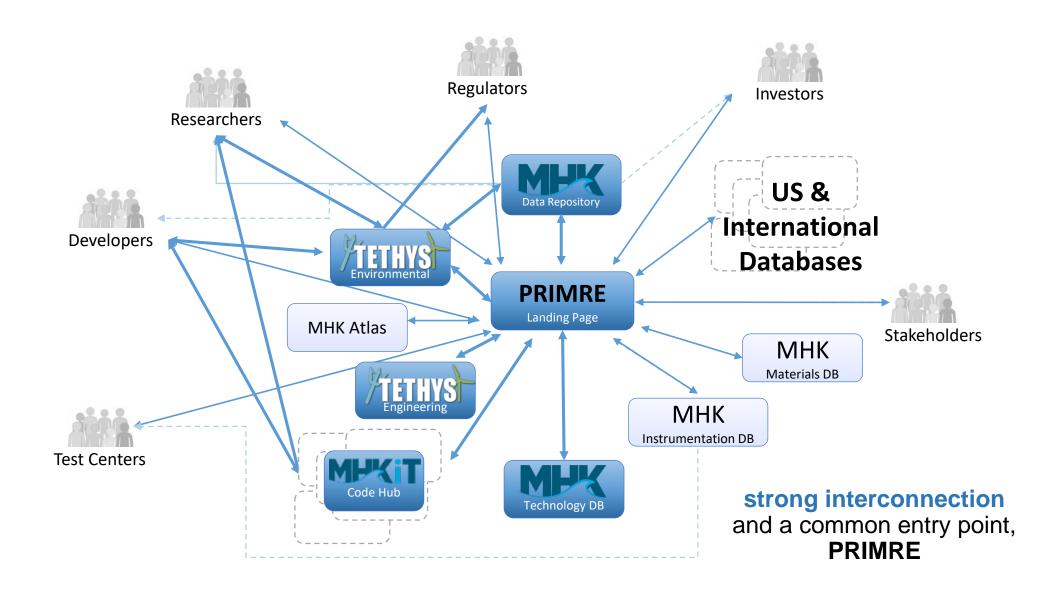
August 7, 2019

Jonathan Whiting, Pacific Northwest National Laboratory
Lysel Garavelli, Pacific Northwest National Laboratory
Andrea Copping, Pacific Northwest National Laboratory
Jon Weers, National Renewable Energy Laboratory
Rick Driscoll, National Renewable Energy Laboratory
Kelley Ruehl, Sandia National Laboratories



Portal and Repository for Information on Marine Renewable Energy

PRIMRE seeks to provide broad access to engineering, resource characterization, and environmental effects information on marine renewable energy projects to facilitate the commercial development of the marine renewable energy (MRE) industry.


- MRE Basics (e.g., terminology)
- Databases (e.g., PMEC)
- Knowledge Hubs (e.g., Tethys, MHKDR)
- Upcoming Events
- Relevant Organizations (e.g., IEC, OES)
- Instructions on how to get involved with PRIMRE

https://primre.org

Integration of PRIMRE Knowledge Hubs

ENERGY

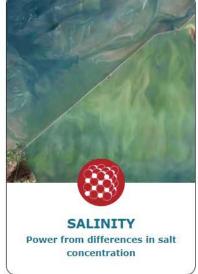
O Today O

NEW USER

If you are new to Tethys, start here to learn more

KNOWLEDGE BASE

Access thousands of pub ations and more, all in a searchable database



Tethys Engineering

Tethys Engineering is a knowledge base that collects, curates, and makes publicly available documents on engineering and technologies associated with marine renewable energy. Sponsored by the US Department of Energy, Tethys Engineering is part of the PRIMRE @ system, and is designed after the Tethys knowledge base.

Currently 2,774 documents in Tethys Engineering, each hand selected and tagged by PNNL staff.

> Columns can be sorted alphabetically or by date

Knowledge Base

TETHYS ENGINEERING

The Knowledge Base provides access to information about technical and engineering aspects of marine renewable energy. Relevant documents from around the world are compiled into a user-friendly table that displays all content available in Tethys Engineering. Results can be narrowed using the keyword filters on the right, or with search terms entered in the text box. Content may also be sorted alphabetically by clicking on column headers. Some entries will appear on the next page.

As an alternative to the Knowledge Base, check out the Map Viewer to access geotagged content in a spatial view.

Title	Author	Date 🕶	Type of Content	Technology	Collection Method	Operations	Device	Publication Type
Modelling and field testing of a breakwater- integrated U- OWC wave energy converter with dielectric elastomer generator	Moretti, G., Malara, G., Scialo, A.	February 2020	Journal Article	Wave, Oscillating Water Column	Modeling, Scale Device		Performance, Power Take Off	Journal Article (2211) Conference Paper (347) Report (108) Book Chapter (68) Thesis (56) Show more Technology Type
The influence of dredging for locking a tidal street energy farm.	Álvarez, M., Ramos, V., Carballo, R.	February 2020	Journal Article	Current, Tidal	Modeling		Hydrodynamics	Wave (1565) Current (1109) Tidal (641) Point Absorber (291) Oscillating Water Column (270)
Unsteady hydrodynamics of tidal turbine blades	Scarlett, G., Viola, I.	February 2020	Journal Article	Current, Tidal	Modeling, Full Scale		Hydrodynamics, Performance	Show more Collection Method
Multi-objective								
optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of	Nandagopal, R., Narasimalu, S.	February 2020	Journal Article	Current, Axial Flow	Field Data, Modeling		Hydrodynamics, Performance	Modeling (1745) Lab Data (409) Field Data (261) Scale Device (211) Full Scale (46) Show more Operations
South East Asia Evaluation of RANS and SRS methods for simulation of the flow around a circular cylinder in the sub-critical regime	Pereira, F., Vaz, G., Eca, L.	December 2019	Journal Article		Modeling		Hydrodynamics	surviv (153) mainten (51) deploy (28) condit (11) monitor (11) Show more
Hydrokinetic energy exploitation under combined river and tidal flow	Fouz, D., Carballo, R., Ramos, V.	December 2019	Journal Article	Current, Riverine, Tidal	Modeling		Hydrodynamics	Performance (939) Hydrodynamics (650) Structural (422) Power Take Off (318)
A fundamental coupling methodology for modeling near-field and far-field wave effects of floating structures and wave energy devices	Stratigaki, V., Troch, P., Forehand, D.	December 2019	Journal Article	Wave	Modeling		Array Effects, Hydrodynamics, Performance	Array Effects (254) Show more Resources character (547) site (547) instrument (87) Event (59) extrem (59)

Results can be filtered down by keyword searches and tags.

The influence of

dredging for locating a

tidal stream energy

ABOUT V CONTENT V CONNECTIONS V HELP V

Photo Library nal Article

Search Map Viewer

Event Calendar

The influence of dredging for In Search Knowledge wase stream energy farm

Abstract

Development of third generation of Tidal Energy Converters (TECs) may boost the exploitation of the tidal stream energy resource in depth-limited regions. The hydrodynamic conditions of depth-limited tidal sites are highly influenced by changes in the bathymetric conditions, such as sedimentation and/or dredging operations, which are typical of these regions. Consequently, significant variations in terms of magnitude and predominant flow direction can be present during the operating life of tidal farms, which may compromise their viability. The objective of this work is to explore the potential effects caused by dredging operations on the performance of tidal farms and to propose initial threshold values for key variables (flow magnitude and direction, operating hours of TECs), to ensure the techno-economic viability of tidal farms. For this purpose, three potential tidal sites in a shallow water estuary (Ribadeo, NW Spain), were used as case study. Significant variations were found between the pre- and post-dredging scenarios in terms of energy production, with annual variations exceeding 38%, for the tidal sites present in the region. In sum, the present study highlights the importance of considering the potential bathymetric changes in the decision-making process, when planning the installation of tidal farms in depth-limited regions.

The influence of dredging for locating a tidal stream energy farm is located in Spain.

Álvarez, M.; Ramos V.; Carballo, R.; Arean, N.; Torres, M.; Iglesias, G. Publication February 1, 2020 Date: Renewable Energy Volume: 242-253 Pages: Publisher: **Affiliation** University of Santiago de Compostela University of Porto SFI Research Centre for Marine and Renewable Energy (MaREI), University Technology: Current, Tidal Collection Method: Hydrodynamics

Document Access

External Link 🗗

Álvarez, M.; Ramos, V.; Carballo, R.; Arean, N.; Torres, M.; Iglesias, G. (2020). The influence of dredging for locating a tidal stream energy farm. Renewable Energy, 146, 242-253. DOI: 10.1016/j.renene.2019.06.125

When copyright allows, Tethys Engineering hosts a PDF copy of the document.

A citation is automatically generated and can be easily copied.

Contact Us

Currently 1,056 geotagged documents in *Tethys* Engineering.

Only a subset of documents are tagged, when they can be associated with a geographic location.

Map Viewer

Home » Content » Map Viewer

The Map Viewer provides a spatial view of information about technical and engineering aspects of marine renewable energy. Documents associated with a geographic location are compiled into an interactive map with panning, zooming, clustering, and filtering. Results can be narrowed using the keyword filters on the right, or with search terms entered in the text box. Content is clustered together but will break apart into smaller clusters or bubbles by zooming in or clicking on a cluster. Individual icons can be selected to open a dialog box with more information and link to the document page.

Not all content is geotagged. Check out the Knowledge Base for access to the full suite of information in Tethys Engineering.

the following:

Documents are tagged with

Technology

Resource

Device

Operations

Economics

Collection Method

Home » Help » Glossary

Glossary

Technology

• Current: Capturing energy from tidal channels, ocean currents, or rivers.

xial Flow: Water flows parallel to the device's axis of rotation.

Cross Flow: Water flows perpendicular to the device's axis of rotation.

- Archimedes Screw: A helical surface surrounding a ventral cylindrical shaft.
- Kite: A device that 'flies' in the tidal stream, swooping in a figure-eight shape.
- Ocean Current: Capturing energy from ocean currents.
- Oscillating Hydrofoil: Water induces oscillating translation of hydrodynamic surface.
- · Riverine: Capturing energy from river currents.
- Tidal: Capturing energy from tidal fluctuations using turbines, tidal barrages, or tidal lagoons.
- . Ocean Thermal Energy Conversion: Capturing energy using temperature gradients across water depths.
 - · Closed-Cycle: An OTEC system in which working fluid with a low-boiling point is circulated.
 - · Open-Cycle: An OTEC system in which warm, surface seawater is the working fluid.
 - Hybrid: An OTEC system in which both seawater and a working fluid are circulated.
- Salinity Gradient: Capturing energy using salinity gradients where freshwater meets seawater.
 - · Pressure Retarded Osmosis: Salinity gradient technology in which osmotic pressure is used to generate electricity.
 - Reverse Electrodialysis: Salinity gradient technology in which cation and anion exchange membranes are used to create a
 "salt battery".
- Wave: Capturing energy from waves.
 - Attenuator: Floating device that operates parallel to the wave direction.
 - · Oscillating Water Column: Hollow structure that uses wave action to compress air through a turbine.
 - Oscillating Wave Surge: Pendulum that oscillates as waves pass by.
 - Overtopping: Storage reservoir filled by breaking waves that exit through turbines.
 - Point Absorber: Device that absorbs energy from the relative motion between a wave-activated, moving body and a fixed structure.
 - · Pressure Differential: Submerged or semi-submerged devices that use differences in pressure to generate electricity.

Collection Method

- Field Data: Data collected in a real-world scenario.
- Lab Data: Data collected in a laboratory setting.
- Modeling: A system or device that is modeled.
- Test Center: Data collected at an established test center.
- Full Scale: Devices deployed or modeled at full scale.
- Scale Device: Device deployed or modeled at smaller than full scale.

Resource

- Extreme Events: Events such as hurricanes, storms, rogue waves, and tsunamis.
- Instrumentation: Instruments placed around the device to monitor it or its effects.
- Site Characterization: Surveying a potential site for bathymetry, energy potential, etc.

Operations

- Deployment: Installation of a device.
- . Maintenance: Work done on a device after it is operational.
- Condition Monitoring: Monitoring the health of a device while in operation.
- Survivability: How a device survives in the ocean (e.g., planned lifespan, fatigue studies).
- Decommissioning: Removal of a device at the end of its lifespan.

Technology definitions will conform to IEC TS 62600-1 standards.

ABOUT · CONTENT · CONNECTIONS · HELP ·

Terminology pages provide a description, photo, and a table of all the documents tagged with term.

Users may also click on authors and other tags to reach similar landing pages.

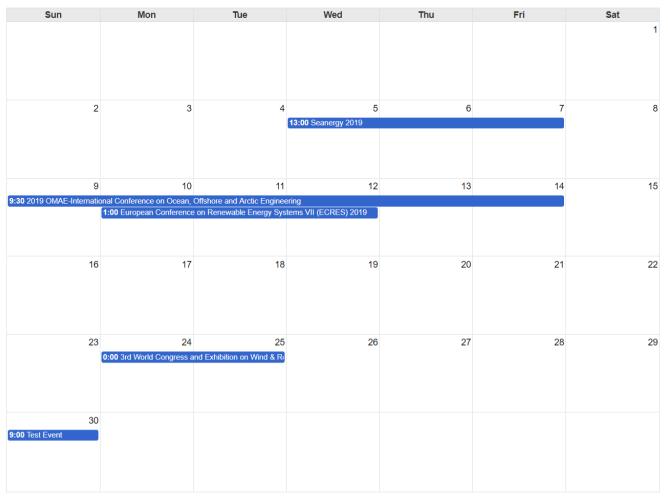
Current

Capturing energy from tidal channels, ocean currents, or rivers.

Current energy can be captured from tidal channels, ocean currents, or rivers. Ocean current energy technologies capture the energy from the relatively constant flow of ocean currents, which are driven by several factors, including wind, bathymetry, and the rotation of the Earth, as well as water temperature, density, and salinity. Tidal energy technologies capture the energy from flow induced by the rise and fall of tides, which is driven by gravitational influence of the moon and sun on the Earth's oceans. Land or subsea constrictions, such as straits and inlets, can create high velocity currents at specific sites, making them suitable for electricity generation. Riverine energy technologies extract the kinetic energy from flowing water in rivers to generate electricity. Although not technically a marine resource, as part of the natural hydrological cycle, water from drainage basins, groundwater springs, and snow melt feed rivers that flow towards lakes, seas, and oceans.

Photo: BALAO-SABELLA

Title	Author	Date v	Type of Content	Technology	Collection Method	Operations	Device
The influence of dredging for locating a tidal stream energy farm	Álvarez, M., Ramos, V., Carballo, R.	February 2020	Journal Article	Current, Tidal	Modeling		Hydrodynamics
Unsteady hydrodynamics of tidal turbine blades	Scarlett, G., Viola, I.	February 2020	Journal Article	Current, Tidal	Modeling, Full Scale		Hydrodynamics, Performance
Multi-objective optimization of hydrofoil geometry used in horizontal axis tidal turbine blade designed for operation in tropical conditions of South East Asia	Nandagopal, R., Narasimalu, S.	February 2020	Journal Article	Current, Axial Flow	Field Data, Modeling		Hydrodynamics, Performance
Hydrokinetic energy exploitation under combined river and tidal flow	Fouz, D., Carballo, R., Ramos, V.	December 2019	Journal Article	Current, Riverine, Tidal	Modeling		Hydrodynamics
Unsteady hydrodynamics of a full-scale tidal turbine operating in large wave conditions	Scarlett, G., Sellar, B., van den Bremer, T.	December 2019	Journal Article	Current, Axial Flow, Tidal			Hydrodynamics, Performance
Turbines for modular tidal current energy converters	Kaufmann, N., Carolus, T., Starzmann, R.	November 2019	Journal Article	Current, Tidal	Modeling, Full Scale		Structural
A review of deep learning for renewable energy forecasting	Wang, H., Lei, Z., Zhang, X.	October 2019	Journal Article	Current, Wave	Modeling		
Power variability of tidal- stream energy and implications for electricity supply	Lewis, M., McNaughton, J., Márquez- Dominguez, C.	September 2019	Journal Article	Current, Tidal	Field Data		Hydrodynamics, Performance
Design and test of a 600- kW horizontal-axis tidal current turbine	Li, Y., Liu, H., Lin, Y.	September 2019	Journal Article	Current, Tidal			Control, Performance, Structural
Reducing variability in the cost of energy of ocean	Topper, M., Nava, V., Collin,	September 2019	Journal Article	Current, Wave	Modeling		Array Effects


ABOUT - CONTENT - CONNECTIONS - HELP -

Home » Content » Event Calendar

Event Calendar

Search Map Viewer
Event Calendar

June 2019

Upcoming Events

- 13th European Wave and Tidal Energy Conference (EWTEC): September 1, 2019 01:00 September 6, 2019 09:00
- OceanObs '19: September 16, 2019 11:30 September 20, 2019 15:30
- Offshore Energy 2019 Exhibition and Conference: October 7, 2019 01:00 October 9, 2019 10:00
- 13th International Tidal Energy Summit: November 11, 2019 01:00 November 12, 2019 09:00
- PAMEC 2020: January 26, 2020 06:00 January 28, 2020 15:00

Databases

ABOUT - CONTENT - CONNECTIONS - HELP -

Photo Library

The Tethys Engineering Photo Library hosts photos and illustrations of marine renewable energy devices, arrays, and facilities that have been graciously provided by several developers and are free for third party use.

CorPower Ocean

The Tethys Engineering Photo Library hosts photos and illustrations of marine renewable energy devices, arrays, and facilities that have been graciously provided by several developers and are free for third party use.

Andritz Hydro

CorPower Ocean

Provided by developers for public use in presentations

and publications.

Added documents are tagged with author affiliations. This view lists which organizations are the top contributors of MRE technical and engineering documents.

The list can be filtered by organization type, country, and by keyword searches.

Home » Connections » MRE Organizations

Organization Type:

MRE Organizations

Country:

This list compiles organizations from around the world that are involved in research pertaining to marine renewable energy devices. Clicking on the organization will direct you to a page which includes additional information on the organization as well as a list of all documents in Tethys Engineering affiliated with the organization. The organizations list is not exhaustive, and will be updated as needed. If you have comments on incorrect or missing material, please email tethys@pnnl.gov.

Search Organization Names:

- Any Any -	•	~	Apply	
Organization	Organization Type	Country	Website	Content Count
University of Edinburgh	Academic	United Kingdom	https://www.ed.ac.uk/home @	116
Uppsala University	Academic	Sweden	http://www.uu.se/en ਯ	76
University College Cork	Academic	Ireland	https://www.ucc.ie/en/ @	69
Plymouth University	Academic	United Kingdom	https://www.plymouth.ac.uk/ @	64
University of Strathclyde	Academic	United Kingdom	http://www.strath.ac.uk/ 🗗	61
University of Santiago de Compostela	Academic	Spain	http://www.usc.es/en/index.html ₺	60
University of Exeter	Academic	United Kingdom	http://www.exeter.ac.uk/ @	60
Aalborg University	Academic	Denmark	https://www.en.aau.dk/ @	59
University of Washington	Academic	United States of America	http://www.washington.edu/ 🛭	55
Norwegian University of Science and Technology (NTNU)	Academic	Norway	http://www.ntnu.edu/ ਊ	48
University of Oxford	Academic	United Kingdom	http://www.ox.ac.uk/ @	48
University of Southampton	Academic	United Kingdom	http://www.southampton.ac.uk/ @	47
Oregon State University	Academic	United States of America	http://oregonstate.edu/ @	46
Sandia National Laboratories (SNL)	Government Research	United States of America	https://www.sandia.gov/ 🛭	45
Maynooth University (National University of Ireland, Maynooth; NUIM)	Academic	Ireland	https://www.maynoothuniversity.ie/ @	38
National Renewable Energy Laboratory (NREL)	Government Research	United States of America	https://www.nrel.gov/ &	37
Cardiff University	Academic	United Kingdom	http://www.cardiff.ac.uk/ 🗗	37
University of Lisbon	Academic	Portugal	http://www.ulisboa.pt/ @	37

Tethys Engineering also maintains a list of other MRE databases. This includes all PRIMRE databases and many international databases.

Home » Connections » MRE Databases

MRE Databases

The list below compiles and provides access to external databases. While the respective scopes of each of the databases are varied, all convey information relevant to marine renewable energy. The list of databases is not exhaustive, and will be updated as needed. If you have comments on incorrect or missing material, please email tethys@pnnl.gov.

Country:		Search Databases:	
- Any -	•		Apply
	Technology		

Title	Technology Type	Country	Description
MHK Tech Papers Blog &	Current, Wave	United States of America	MHKTech Papers Blog aggregates technical papers related to the development of marine and hydrokinetic technologies and focuses on technology development, economics, and resource assessment.
OpenEI ⊕	Current, Wave	United States of America	OpenEI is an energy information portal sponsored by the U.S. Department of Energy and developed by the National Renewable Energy Laboratory in support of the Open Government Initiative to make energy data transparent, participatory, and collaborative. In wiki format, OpenEI hosts a collection of content and data on a wide variety of topics from renewable energy resources and technologies, policy and regulations, and analyzed and raw data.
Marine and Hydrokinetic Data Repository (MHKDR) &	Current, Wave	United States of America	The Marine and Hydrokinetic Data Repository (MHKDR), hosted on OpenEI, is the repository for all data collected using funds from the Water Power Technologies Office of the U.S. Department of Energy (DOE).
Marine and Hydrokinetic Technology Database &	Current, Wave	United States of America	The U.S. Department of Energy's Marine and Hydrokinetic Technology Database, hosted on OpenEI, provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water.
Hydrodynamic Testing Facilities Database &	Current, Wave	United States of America	The U.S. Department of Energy's Hydrodynamic Testing Facilities Database, hosted on OpenEI, couples a map-based viewer with a list of hydrodynamic testing facilities to provide data on a range of testing capabilities and services available at commercial, academic, and government facilities, as well as offshore berths, within the United States.
Tethys	Current, Ocean Thermal Energy Conversion, Salinity Gradient, Wave	United States of America	Tethys is an online knowledge management system that provides access to information on the environmental effects of wind and marine renewable energy. Launched by the Pacific Northwest National Laboratory to support the U.S. Department of Energy's Water Power Technologies Office and Wind Energy Technologies Office, Tethys houses thousands of peer reviewed papers, technical reports, geospatial content, and other media and metadata.
MHK & Wind Materials Database &	Current, Wave	United States of America	The U.S. Department of Energy's Wind Energy Technologies Office and Water Power Technologies Office have funded Sandia National Laboratories and its partner, Montana State University, to conduct extensive testing and analysis on wind turbine blades and materials for marine hydrokinetic (MHK) devices in support of the industry and research communities. The results of over 16,000 tests on 500 materials (since 1989 for wind, and more recently for water) have been compiled and published annually in the MHK & Wind Material Database, along with numerous technical publications analyzing the key trends and technical results of the tests.
Marine Cadastre ₽	Current, Wave	United States of America	Marine Cadastre is an integrated marine information system that provides data, tools, and technical support for ocean and Great Lakes planning. Developed through a partnership between the U.S.'s National Oceanic and Atmospheric Administration (NOAA) and Bureau of Ocean Energy Management (BOEM), Marine Cadastre provides information regarding biologically important areas, maritime boundaries, offshore wind technology depth zones, offshore tidal stream wave, and wind resource potentials, and more

ABOUT · CONTENT · CONNECTIONS · HELP · REPORTING ·

Home » Connections » Tethys Engineering Community

Tethys Engineering Community

The Tethys Engineering Community is comprised of a diverse group of researchers, developers, regulators, and stakeholders working in the field of and/or interested in marine renewable energy. The Tethys Community is defined by registered users within Tethys Engineering; users who have given permission to share professional contact information with other registered users are displayed in the table below.

Background:	Country:	Search by Name:	
- Any -	- Any -		Apply

Name	Background	Organization	Department	Interest	Phone Number	Country	Content Count
Jonathan Whiting	Researcher	Pacific Northwest National Laboratory	Marine Science Laboratory	Environmental Impacts, Risk Modeling, Social Outreach	+1 206- 528- 3060	United States of America	0
Wei- Cheng Wu	Researcher	Pacific Northwest National Laboratory	Coastal Sciences	Hydrodynamic Modeling; Wave Modeling; Marine Renewable Energy	+1 541- 602- 9879	United States of America	0
Hayley Farr	Researcher	Pacific Northwest National Laboratory	Coastal Sciences	Wind & Marine Renewable Energy		United States of America	0

Displaying 1 - 3 of 3 users

Upcoming Features

- Continuing content collection
- Improving linkages with Tethys and other PRIMRE sites
- Tethys Engineering Blasts
- Signature Projects

26 July 2019

The bi-weekly *Tethys* Blast highlights new information on *Tethys*, news articles of international interest, and opportunities in wind and marine renewable energy. We hope you find this a valuable tool to keep you connected to colleagues, new research, opportunities, and industry milestones.

Request for Information

The Department of Energy's (DOE) Water Power Technologies Office is requesting your input on the use of the Pacific Northwest National Laboratory's (PNNL) Marine Sciences Laboratory (MSL) facilities in Sequim, Washington, for research, technology development, and testing related to all aspects of renewable energy, maritime markets, and energy storage. This information will help DOE and PNNL prioritize resources and investments. Please respond to this Request for Information via email to wptorfi@ee.doe.gov by 8 August 2019.

Upcoming Workshop on Retiring Risk: Registration Extended

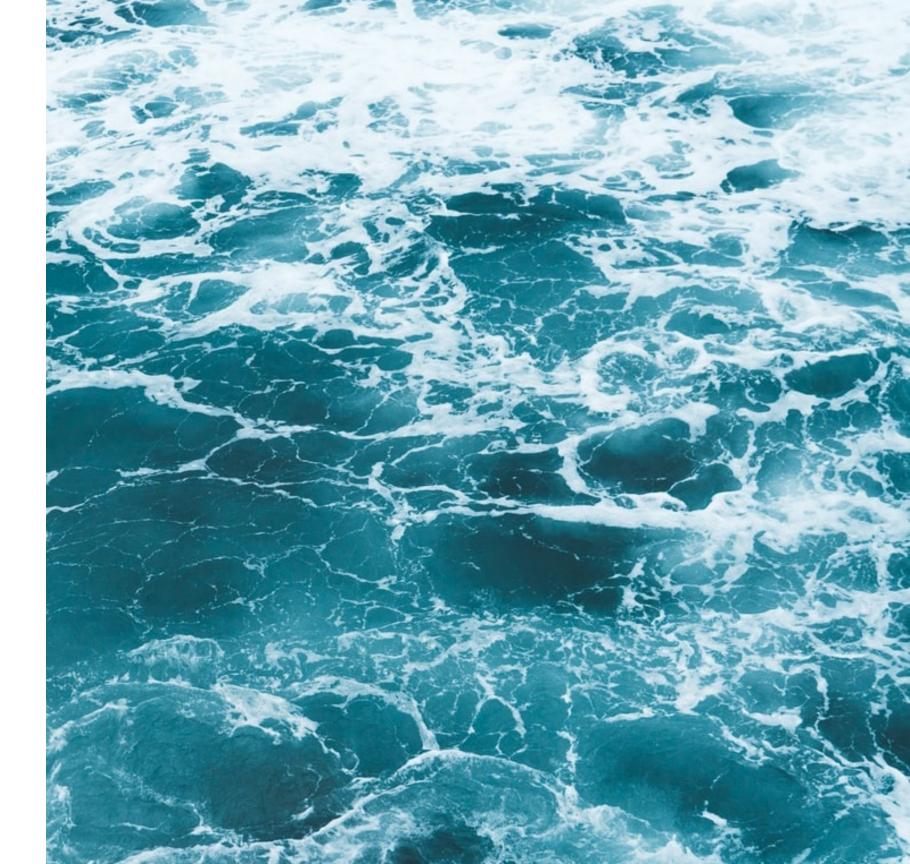
OES-Environmental (formerly Annex IV) and ORJIP invite you to join a workshop on Thursday, 5 September 2019 from 14:30 to 17:30 CEST on retiring risks of effects on marine animals from electromagnetic fields and underwater noise from marine energy devices. The workshop will be held in Naples, Italy, at the Centro Congressi della Stazione Marittima di Napoli, following the European Wave and Tidal Energy Conference (EWTEC). You can register for the workshop by sending an email to ORJIP (ORJIP@aquatera.co.uk) by 2 August 2019. Once you are registered, you will receive materials at least two weeks prior to the workshop. For more information, visit the workshop's event page on Tethys.

Upcoming Workshop on Ocean Energy Reliability

MONITOR and RiaSoR2 invite you to join a workshop on Tuesday, 3 September 2019 from 15:30 to 19:00 CEST on wave and tidal energy reliability. The workshop will be held in Naples, Italy, at the Renaissance Hotel Mediterraneo in Napoli during the European Wave and Tidal Energy Conference (EWTEC). You can register for the workshop by sending an email to carly.tait@emec.org.uk by 31 July 2019. For more information, view the workshop invite here.

Upcoming PRIMRE Workshops

- European Wave and Tidal Energy Conference
 - Conference in Napoli, Italy
 - Workshop from 5:30-7pm on 2 September 2019
- Ocean Renewable Energy Conference
 - Conference in Portland, Oregon, USA
 - Workshop on 11 September 2019



Thank you! Questions?

Additional questions and comments may be sent to: tethys@pnnl.gov

PNNL is operated by Battelle for the U.S. Department of Energy

